ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 19, 2017
Accepted December 1, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Photocatalytic removal of NOx over immobilized BiFeO3 nanoparticles and effect of operational parameters

Research Laboratory of Petroleum Technology, Faculty of Chemistry, University of Tabriz, Tabriz, Iran 1Department of Applied Chemistry, Faculty of Chemistry, University of Urmia, Urmia, Iran 2School of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan, ROC 3Research Laboratory of Reactor and Catalyst, Faculty of Chemical Engineering, University of Tabriz, Tabriz, Iran
Korean Journal of Chemical Engineering, April 2018, 35(4), 994-999(6), 10.1007/s11814-017-0331-7
downloadDownload PDF

Abstract

We prepared and characterized co-crystals of the antidepressant drug agomelatine with pharmaceutically acceptable coformers for enhanced solubility. A novel agomelatine-resorcinol (AGO-RES, 2 : 1) co-crystal was synthesized and its crystal structure was confirmed via single crystal X-ray diffraction. The AGO-RES co-crystal structure was created through the O-H…O and N-H…O hydrogen bonding between the phenolic OH of RES and the amide group of AGO. The chemical structure of two AGO co-crystals was characterized by FT-IR and Raman spectroscopies, whereas the solution behavior was determined by the intrinsic dissolution rate. When tested in water, both AGORES and AGO-HYQ form-I co-crystals showed higher apparent solubility than pure AGO. But the resulting AGO solution in a supersaturated state partially precipitated into specific crystal forms of AGO. As anticipated, the intrinsic dissolution rate of AGO was substantially enhanced by the co-crystal forms, which signifies that the bioavailability of AGO can be increased via co-crystal formulation approach.

References

Angelo J, Andrade L, Madeira LM, Mendes A, J. Environ. Manage., 129, 522 (2013)
Lasek J, Yu YH, Wu J, J. Photochem. Photobiol. C: Photochem. Rev., 14, 29 (2013)
Normann F, Andersson K, Leckner B, Johnsson F, Prog. Energy Combust. Sci., 35(5), 385 (2009)
Panahi PN, Niaei A, Salari D, Mousavi SM, Delahay G, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 35, 135 (2015)
Roy S, Hegde MS, Madras G, Appl. Energy, 86(11), 2283 (2009)
Maggos T, Bartzis J, Leva P, Kotzias D, Appl. Phys. A-Mater. Sci. Process., 89(1), 1 (2007)
Catalan G, Scott JF, Adv. Mater., 21(24), 2463 (2009)
Liu H, Guo Y, Guo B, Zhang D, Solid State Sciences, 19, 69 (2013)
Ai Z, Ho W, Lee S, Zhang L, Environ. Sci. Technol., 43(11), 4143 (2009)
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK, Angew. Chem.-Int. Edit., 52(29), 7372 (2013)
Humayun M, Zada A, Li ZJ, Xie MZ, Zhang XL, Qu Y, Raziq F, Jing LQ, Appl. Catal. B: Environ., 180, 219 (2016)
Bowering N, Walker GS, Harrison PG, Appl. Catal. B: Environ., 62(3-4), 208 (2006)
Anpo M, Kim TH, Matsuoka M, Catal. Today, 142(3), 114 (2009)
Yamashita H, Ichihashi Y, Zhang SG, Matsumura Y, Souma Y, Tatsumi T, Anpo M, Appl. Surf. Sci., 121, 305 (1997)
Anpo M, Takeuchi M, J. Catal., 216(1-2), 505 (2003)
Ibhadon AO, Fitzpatrick P, Catalysts, 3(1), 189 (2013)
Schneider J, Matsuoka M, Takeuchi M, Zhang JL, Horiuchi Y, Anpo M, Bahnemann DW, Chem. Rev., 114(19), 9919 (2014)
Fathinia M, Khataee AR, Zarei M, Aber S, J. Mol. Catal. A-Chem., 333(1-2), 73 (2010)
Quan C, Han Y, Gao N, Mao W, Zhang J, Yang J, Huang W, Ceram. Int., 42(1), 537 (2016)
Gao N, Quan C, Ma Y, Han Y, Wu Z, Mao W, Zhang J, Yang J, Huang W, Physica B, 481, 45 (2016)
Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou Z, Liu JM, Adv. Mater., 19(19), 2889 (2007)
Li L, Liu X, Zhang YL, Salvador PA, Rohrer GS, Int. J. Hydrog. Energy, 38(17), 6948 (2013)
Jia DC, Xu JH, Ke H, Wang W, Zhou Y, J. European Ceram. Soc., 29(14), 3099 (2009)
Aber S, Mehrizade H, Khataee AR, Desalination Water Treatment, 28(1-3), 92 (2011)
Sheng-Hong Y, Sen C, Ning Y, Yue-Li Z, Ferroelectrics, 454(1), 78 (2013)
Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A, J. Photochem. Photobiol. A-Chem., 332, 188 (2017)
Soltani T, Lee BK, J. Hazard. Mater., 316, 122 (2016)
Huo YN, Jin Y, Zhang Y, J. Mol. Catal. A-Chem., 331(1-2), 15 (2010)
Zazouli MA, Jolodar AN, Hoseinei M, J. Appl. Sci. Environ. Manage., 12(1), 119 (2018)
Devahasdin S, Fan C, Li K, Chen DH, J. Photochem. Photobiol. A-Chem., 156(1), 161 (2003)
de Melo JVS, Triches G, Building Environ., 49, 117 (2012)
Gaya UI, Abdullah AH, J. Photochem. Photobiol. C: Photochem. Rev., 9(1), 1 (2008)
Husken G, Hunger M, Brouwers H, Building Environ., 44(12), 2463 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로