ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 23, 2017
Accepted November 5, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mesoporous alumina with high capacity for carbon monoxide adsorption

Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea
korea1@kw.ac.kr
Korean Journal of Chemical Engineering, February 2018, 35(2), 587-593(7), 10.1007/s11814-017-0309-5
downloadDownload PDF

Abstract

Carbon monoxide, CO, is an anthropogenic toxic pollutant and its mixture is easily flammable by heated surfaces and open flames. Thus, developing effective adsorbents with a high uptake capacity to adsorb CO from incomplete burned air and flammable gases containing CO is required. Because nanoporous materials are reported to show high performance as adsorbents, we prepared mesoporous alumina (MA) and used it as the CO adsorbent. MA prepared by the post-hydrolysis method showed pore properties such as a uniform pore size, an interlinked pore system, and a large surface area, as compared to commercial adsorbents (activated carbon, zeolite, and silica powder). Adsorption isotherm test was carried out to evaluate the adsorption performance of the as-prepared MA. In addition, Pd-nanodots were immobilized on the MA to enhance the uptake capacity of CO. MA exhibited six to seven-times higher uptake capacity for CO than commercial adsorbents, and its maximum uptake capacity increased 1.3-3.1 times through Pd-nanodots loading. Although the larger surface area of adsorbents is an important factor for ideal adsorbents, a regular and interlinked pore system of adsorbents was found to be more crucial factor to adsorb CO.

References

Sato H, Kosaka W, Matsuda R, Hori A, Hijikata Y, Belosludov RV, Sakaki S, Takata M, Kitagawa S, Science, 343(6167), 167 (2014)
Barea E, Montoro C, Navarro JAR, Chem. Soc. Rev., 43, 5419 (2014)
Sandilands EA, Bateman DN, Medicine, 44, 151 (2016)
Carbon monoxide in the workplace, Industrial Accident Prevention Association (2008).
Environmental health criteria 213 Carbon monoxide, International Programme on Chemical Safety, World Health Organization (1999).
Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O, Chem. Eng. Sci., 66(2), 163 (2011)
Lehman SE, Larsen SC, Environ. Sci.: Nano, 1, 200 (2014)
Walcarius A, Mercier L, J. Mater. Chem., 20, 4478 (2010)
Chiang WS, Fratini E, Baglioni P, Chen JH, Liu Y, Langmuir, 6, 8849 (2016)
Hanif A, Dasgupta S, Nanoti A, Chem. Eng. J., 15, 703 (2015)
Belmabkhout Y, De Weireld G, Sayari A, Langmuir, 25(23), 13275 (2009)
Zamani C, Illa X, Abdollahzadeh-Ghom S, Morante JR, Rodriguez AR, Nanoscale Res. Lett., 4, 1303 (2009)
Hung CT, Bai HL, Chem. Eng. Sci., 63(7), 1997 (2008)
Thote JA, Chatti RV, Iyer KS, Kumar V, Valechha AN, Labhsetwar NK, Biniwale RB, Yenkie MKN, Rayalu SS, J. Environ. Sci., 24, 1979 (2012)
Chen C, Ahn WS, Chem. Eng. J., 1666, 646 (2011)
Kim Y, Kim C, Choi I, Rengaraj S, Yi J, Environ. Sci. Technol., 38, 924 (2004)
Kim Y, Lee B, Yi J, Korean J. Chem. Eng., 24(4), 679 (2007)
Rengaraj S, Yeon JW, Kim Y, Kim WH, Ind. Eng. Chem. Res., 46(9), 2834 (2007)
Kim Y, Kim C, Yi J, Mater. Res. Bull., 39(13), 2103 (2004)
Rainer DR, Wu MC, Mahon DI, Goodman DW, J. Vac. Sci. Technol. A, 14(3), 1184 (1996)
Fottinger K, Schlogl R, Rupprechter G, Chem. Commun., 320, 2008
Mohideen MIH, Xiao B, Wheatley PS, McKinlay AC, Li Y, Slawin AMZ, Aldous DW, Cessford NF, Duren T, Zhao X, Gill R, Thomas KM, Griffin JM, Ashbrook SE, Morris RE, Nature Chem., 3, 304 (2011)
Liu SJ, J. Colloid Interface Sci., 450, 224 (2015)
Bastos-Neto M, Moeller A, Staudt R, Bohm J, Glaser R, Sep. Purif. Technol., 77(2), 251 (2011)
Wang YF, Bryan C, Xu HF, Pohl P, Yang Y, Brinker CJ, J. Colloid Interface Sci., 254(1), 23 (2002)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로