ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 10, 2017
Accepted October 18, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 1Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
neeranuch.p@psu.ac.th
Korean Journal of Chemical Engineering, February 2018, 35(2), 503-510(8), 10.1007/s11814-017-0297-5
downloadDownload PDF

Abstract

Torrefaction of the microalga Chlorella vulgaris was carried out in a fixed-bed tubular reactor under various conditions of temperature (150-300 °C), time (15-60min), and atmosphere (inert or oxidative). The impact of torrefaction and its various conditions on the mass yield, physical properties, chemical composition, and reactivity of the microalgal biomass was assessed and compared with those of the raw material. After torrefaction, the morphology, proximate analysis, ultimate analysis, higher heating value analysis, chemical compositions, and thermal behavior of the biomass were carried out. The results show that torrefaction temperature influenced mass yield and changes in the microalgae’s properties more than torrefaction time and atmosphere. Torrefaction at 200 °C, for 30min in an inert atmosphere led to the highest calorific value of torrefied microalgae. In addition, torrefaction reduced the thermal degradation rates of the remaining protein and carbohydrate fractions in the biomass, but accelerated the degradation rate of the lipids fraction.

References

Uslu A, Faaij APC, Bergman PCA, Energy, 33(8), 1206 (2008)
Lu KM, Lee WJ, Chen WH, Lin TC, Appl. Energy, 105, 57 (2013)
Chen WH, Peng J, Bi XT, Renew. Sust. Energ. Rev., 44, 847 (2015)
Chen WH, Lu KM, Liu SH, Tsai CM, Lee WJ, Lin TC, Bioresour. Technol., 146, 152 (2013)
Batidzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC, Energy, 62, 196 (2013)
Wang CW, Peng JH, Li H, Bi XTT, Legros R, Lim CJ, Sokhansanj S, Bioresour. Technol., 127, 318 (2013)
Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC, Bioresour. Technol., 123, 98 (2012)
Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ, Fuel Process. Technol., 89(2), 169 (2008)
Patel B, Gami B, Bhimani H, Energy Sustainable Dev., 15, 372 (2011)
van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ, Biomass Bioenerg., 35(9), 3748 (2011)
Phanphanich M, Mani S, Bioresour. Technol., 102(2), 1246 (2011)
Bridgeman TG, Jones JM, Shield I, Williams PT, Fuel, 87(6), 844 (2008)
Pimchuai A, Dutta A, Basu P, Energy Fuels, 24, 4638 (210)
Li J, Brzdekiewicz A, Yang WH, Blasiak W, Appl. Energy, 99, 344 (2012)
Sarkar M, Kumar A, Tumuluru JS, Patil KN, Bellmer DD, Appl. Energy, 127, 194 (2014)
Cao L, Yuan XZ, Li H, Li CZ, Xiao ZH, Jiang LB, Huang BB, Xiao ZH, Chen XH, Wang H, Zeng GM, Bioresour. Technol., 185, 254 (2015)
Ru B, Wang SR, Dai GX, Zhang L, Energy Fuels, 29(9), 5865 (2015)
Poudel J, Ohm TI, Oh SC, Fuel, 140, 275 (2015)
Atienza-Martinez M, Mastral JF, Abrego J, Ceamanos J, Gea G, Energy Fuels, 29(1), 160 (2015)
Wu KT, Tsai CJ, Chen CS, Chen HW, Appl. Energy, 100, 52 (2012)
Uemura Y, Matsumoto R, Saadon S, Matsumura Y, Fuel Process. Technol., 138, 133 (2015)
Chen WH, Kuo PC, Energy, 35(6), 2580 (2010)
Chen WH, Kuo PC, Energy, 36(2), 803 (2011)
Prins MJ, Ptasinski KJ, Janssen FJJG, J. Anal. Appl. Pyrolysis, 77, 35 (2006)
Dhungana A, Basu P, Dutta A, J. Energy Resour. Technol.-Trans. ASME, 134, 041801 (2012)
Tapasvi D, Khalil R, Skreiberg O, Tran KQ, Gronli M, Energy Fuels, 26(8), 5232 (2012)
Chen WH, Zhuang YQ, Liu SH, Juang TT, Tsai CM, Bioresour. Technol., 199, 367 (2016)
Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF, Springer, Netherlands (2013).
Mecozzi M, Chemom. Intell. Lab. Syst., 79, 84 (2005)
Smedes F, Thomasen TK, Mar. Pollut. Bull., 32, 681 (1996)
Friedl A, Padouvas E, Rotter H, Varmuza K, Anal. Chim. Acta, 544, 191 (2005)
Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH, J. Anal. Appl. Pyrolysis, 86, 331 (2009)
Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC, Energy, 36(5), 3012 (2011)
Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T, Fuel, 103, 156 (2013)
Chen YC, Chen WH, Lin BJ, Chang JS, Ong HC, Appl. Energy, 181, 110 (2016)
Phukan MM, Chutia RS, Konwar BK, Kataki R, Appl. Energy, 88(10), 3307 (2011)
Ibrahim RHH, Darvell LI, Jones JM, Williams A, J. Anal. Appl. Pyrolysis, 103, 21 (2013)
Stehfest K, Toepel J, Wilhelm C, Plant Physiol. Biochem., 43, 717 (2005)
Mecozzi M, Pietroletti M, Tornambe A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 78, 1572 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로