ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 7, 2018
Accepted August 28, 2018
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

An organofunctionalized MgO.SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa

Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
agnieszka.kolodziejczak-radzimska@put.poznan.pl
Korean Journal of Chemical Engineering, November 2018, 35(11), 2220-2231(12), 10.1007/s11814-018-0146-1
downloadDownload PDF

Abstract

Lipase from Candida rugosa was immobilized on MgO·SiO2 hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature N2 sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25- 28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on MgO.SiO2 hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range 30-70 oC. Lipase immobilized on the MgO.SiO2 systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.

References

Zucca P, Sanjust E, Molecules, 19, 14139 (2014)
Liu DM, Chen J, Shi YP, Trends Anal. Chem., 102, 332 (0218)
Tran DN, Balkus KJ, ACS Catal., 1, 956 (2011)
Weetall HH, Methods Enzymol., 44, 134 (1976)
Hartmann M, Kostrov X, Chem. Soc. Rev., 42, 6277 (2013)
Cao L, Carrier-bound immobilized enzymes: principles, application and design, Wiley, New York (2006).
Zhou Z, Hartmann M, Top. Catal., 55, 1081 (2012)
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R, Enzyme Microb. Technol., 40(6), 1451 (2007)
Zdarta J, Meyer AS, Jesionowski T, Pinelo M, Catalysts, 8, 92 (2018)
Hartmann M, Kostrov X, Chem. Soc. Rev., 42, 6277 (2013)
Kato K, Irimescu R, Saito T, Yokogawa Y, Takahashi H, Biosci. Biotechnol. Biochem., 67, 203 (2003)
Goradia D, Cooney J, Hodnett BK, Magner E, J. Mol. Catal. B-Enzym., 32, 231 (2005)
Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marison IW, O’Fagain C, J. Mol. Catal. B-Enzym., 32, 231 (2005)
Jesionowski T, Zdarta J, Krajewska B, Adsorption, 20, 801 (2014)
Zhao B, Liu XL, Jiang YJ, Zhou LY, He Y, Gao J, Appl. Biochem. Biotechnol., 173(7), 1802 (2014)
Wan Y, Zhao DY, Chem. Rev., 107(7), 2821 (2007)
Hoffman H, Cornelius M, Morell J, Froba M, Angew. Chem.-Int. Edit., 45, 3216 (2006)
Magner E, Chem. Soc. Rev., 42, 6213 (2013)
Tukel SS, Alptekin O, Process Biochem., 39(12), 2149 (2004)
Ozyilmaz G, Tukel SS, Alptekin O, J. Mol. Catal. B-Enzym., 35, 154 (2005)
Hartmann M, Jung D, J. Mater. Chem., 20, 844 (2010)
Hudson S, Cooney J, Magner E, Angew. Chem.-Int. Edit., 47, 8582 (2008)
Abdallah NH, Schlumpberger M, Gaffney DA, Hanrahan JP, Tobin JM, Magner E, J. Mol. Catal. B-Enzym., 108, 82 (2014)
Liu W, Wei LN, J. Mol. Catal., 30, 182 (2016)
Wang XY, Tian G, Jiang N, Su BL, Energy Environ. Sci., 5, 5540 (2012)
Xie WL, Wang JL, Energy Fuels, 28(4), 2624 (2014)
Chen Z, Liu L, Wu X, Yang R, RSC Adv., 6, 108583 (2016)
Xie W, Zang X, Food Chem., 257, 15 (2018)
Xie W, Zang X, Food Chem., 194, 1283 (2016)
Li QY, Wang PY, Zhou YL, Nie ZR, Wei Q, J. Sol-Gel Sci. Technol., 78, 523 (2016)
Xie WL, Huang MY, Energy Conv. Manag., 159, 42 (2018)
Heidanzadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B, Int. J. Biol. Macromol., 101, 696 (2017)
Wan LS, Ke BB, Xu ZK, Enzyme Microb. Technol., 42(4), 332 (2008)
Xie W, Zang X, Food Chem., 227, 397 (2017)
Klapiszewski L, Zdarta J, Antecka K, Synoradzki K, Moszynski D, Jesionowski T, Appl. Surf. Sci., 422, 94 (2018)
Zdarta J, Antecka K, Jedrzak A, Synoradzki K, Luczak M, Jesionowski T, Colloids Surf. B: Biointerfaces, 169, 118 (2018)
Ciesielczyk F, GoscianskA J, Zdarta J, Jesionowski T, Colloids Surf. A: Physicochem. Eng. Asp., 545, 39 (2018)
Ambrogio MW, Thomas CR, Zhao YL, Zink JL, Stodart JF, Accounts Chem. Res., 44, 903 (2011)
Zhu YT, Ren XY, Liu YM, Wei Y, Qiang LS, Mater. Sci. Eng., 38, 278 (2014)
Lei Z, Liu X, Ma L, Liu D, Zhong H, Wang Z, RSC Adv., 5, 38665 (2015)
Ciesielczyk F, Krysztafkiewicz A, Jesionowski T, J. Mater. Sci., 42(11), 3831 (2007)
Jesionowski T, Krysztafkiewicz A, Appl. Surf. Sci., 172(1-2), 18 (2001)
Jesionowski T, Krysztafkiewicz A, J. Non-Cryst. Solids, 277, 45 (2000)
Ciesielczyk F, Nowacka M, Przybylska A, Jesionowski T, Colloids Surf. A: Physicochem. Eng. Asp., 376, 21 (2011)
Ciesielczyk F, Krysztafkiewicz A, Jesionowski T, Appl. Surf. Sci., 253(20), 8435 (2007)
Bradford MM, Anal. Biochem., 7, 248 (1976)
Siwinska-Stefanska K, Ciesielczyk F, Nowacka M, Jesionowski T, J. Nanomater., 2012, Article ID 316173, 19 (2012), doi:10.1155/2012/316173.
Zdarta J, Salek K, Kolodziejczak-Radzimska A, Siwinska-Ste-Fanska K, et al., Open. Chem., 13, 138 (2015)
Ciesielczyk F, Bartczak P, Zdarta J, Jesionowski T, J. Environ. Manage., 204, 123 (2017)
Ma PC, Kim JK, Tang BZ, Carbon, 44, 3232 (2006)
Natalello A, Ami D, Brocca S, Lotti M, Doglia SM, Biochem. J., 385, 511 (2005)
Raghavendra T, Basak A, Manocha LM, Shah AR, Madamwar D, Bioresour. Technol., 140, 103 (2013)
Kołodziejczak-Radzimska A, Zdarta J, Jesionowski T, Biotechnol. Prog., 34, 767 (2018)
Zdarta J, Klapieszewski L, Wysokowski M, Norman M, Kolodziejczak-Radzimska A, Moszynski D, et al., Mar. Drugs, 13, 2424 (2015)
Banjanac K, Mihailovic M, Prlainovic N, Corovic M, Carevic M, Marinkovic A, Bezbradica D, J. Chem. Technol. Biotechnol., 91(10), 2654 (2016)
Liu XH, Fang YC, Yang X, Li Y, Wang CE, Chem. Eng. J., 336, 456 (2018)
Li K, Fan Y, He Y, Zeng L, Han X, Yan Y, Scientific Reports, 7, 1 (2017)
Gunathilake C, Jaroniec M, J. Mater. Chem., 4, 10914 (2016)
Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S, Chem. Mater., 12, 3301 (2000)
Hong SG, Kim BC, Bin Na H, Lee J, Youn J, Chung SW, Lee CW, Lee B, Kim HS, Hsiao E, Kim SH, Kim BG, Park HG, Chang HN, Hyeon T, Dordick JS, Grate JW, Kim J, Chem. Eng. J., 322, 510 (2017)
Kuwahara Y, Yamanishi T, Kamegawa T, Mori K, Yamashita H, ChetCatChem, 5, 2527 (2013)
Khoobi M, Motevalizadeh SF, Asadgol Z, Forootanfar H, Shafiee A, Faramarzi MA, Biochem. Eng. J., 88, 131 (2014)
Klapiszewski L, Zdarta J, Jesionowski T, Colloids Surf. B: Biointerfaces, 162, 90 (2018)
Straksys A, Kochane T, Budriene S, Food Chem., 211, 294 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로