Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 31, 2016
Accepted December 29, 2016
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: A comparative study of two force fields
School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
movahedirad@iust.ac.ir
Korean Journal of Chemical Engineering, April 2017, 34(4), 977-986(10)
https://doi.org/10.1007/s11814-016-0367-0
https://doi.org/10.1007/s11814-016-0367-0
Abstract
Molecular dynamic simulation was used to calculate the self-diffusion coefficients of ions in aqueous KCl solution. The simulations were performed for enough time (12 ns) in the form of all-atom to determine the accurate values of the self-diffusion coefficients. The values of the self-diffusion coefficients were calculated by Einstein equation. Two different force fields of Dang and Deublein were employed in the simulations, and we found that at low ion concentration (equal or less than 3mol/(kg of H2O)), the Dang force field is more accurate for prediction of the selfdiffusion coefficient of K+ ions and Deublein force field is more accurate for Cl- ions. An Arrhenius type equation was used to model the temperature dependence of the self-diffusion coefficients and the diffusion activation energies at different ion concentrations were reported.
References
Ghaffari A, Rahabar-Kelishami A, J. Mol. Liq., 187, 238 (2013)
Parthasarathi R, Sun J, Dutta T, Sun N, Pattathil S, Konda NVSNM, Peralta AG, Simmons BA, Singh S, Biotechnol. Biofuels, 9, 1 (2016)
Chilavo AA, Vlcek L, Fluid Phase Equilib., 407, 84 (2015)
Lee HY, Manivannan V, Goodenough J, C.R. Acad. Sci., Ser. IIc: Chim., 2, 565 (1999)
Edelman I, Leibman J, Am. J. Med., 27, 256 (1959)
Shekhtar G, Rai M, Mahulkar NP, Karandikar PB, in Electronics and Communication Systems (ICECS), 2nd International Conference on, Coimbatore (2015).
Kim M, Oh I, Kim J, Phys. Chem. Chem. Phys., 17, 16367 (2015)
Rausch MH, Hopf L, Heller A, Leipertz A, Froba AP, J. Phys. Chem. B, 117(8), 2429 (2013)
Sundar LS, Ramana EV, Singh MK, Sousa ACM, Int. Commun. Heat Mass Transf., 56, 86 (2014)
Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, Int. J. Thermophys., 34, 1 (2013)
Dutta BK, Principle of Mass Transfer and Separation Process, PHI Learning Pvt. Ltd., New Dehli (2009).
Sherwood TK, Pigford RL, Wilke CR, Mass Transfer, McGraw-Hill (1975).
Kimmich R, Unrath W, Schnur G, Rommel E, J. Magn. Reson., 91, 136 (1991)
Meyer A, Phys. Rev. B, 81, 1 (2010)
Lascombe J, Molecular Motions in Liquids: Proceedings of the 24th Annual Meeting of the Societe de Chimie Physique Paris-Orsay, 2-6 July 1972, Springer Science & Business Media (2012).
Anderko A, Lencka MM, Ind. Eng. Chem. Res., 37(7), 2878 (1998)
Wang PM, Anderko A, Ind. Eng. Chem. Res., 42(14), 3495 (2003)
Chenyu Z, Shin YK, van Duin ACT, Fang H, Liu ZK, Acta Mater., 83, 102 (2015)
Zhang N, Shen Z, Chen C, He G, Hao C, J. Mol. Liq., 203, 90 (2015)
Landuzzi F, Pasquini L, Giusepponi S, Celino M, Montone A, Palla PL, Cleri F, J. Mater. Sci., 50(6), 2502 (2015)
Israelachvili JN, Intermolecular and Surface Forces, Elsevier Science (2015).
Li Z, Borodin O, Smith GD, Bedrov D, J. Phys. Chem. B, 119(7), 3085 (2015)
Xu K, Ji X, Chen C, Wan HZ, Miao L, Jiang JJ, Electrochim. Acta, 166, 142 (2015)
Rajput NN, Qu XH, Sa N, Burrell AK, Persson KA, J. Am. Chem. Soc., 137(9), 3411 (2015)
Kasemagi H, Ollikainen M, Brandell D, Aabloo A, Electrochim. Acta, 175, 47 (2015)
Duyail M, Villard A, Nguyen TN, Dufreche JF, J. Phys. Chem. B, 119(34), 11184 (2015)
Meier K, Laesecke A, Kabelac S, Int. J. Thermophys., 22, 161 (2001)
Furtado FA, Abreu CRA, Tavares FW, AIChE J., 61(9), 2881 (2015)
Guevara-Carrion G, Nieto-Draghi C, Vrabec J, Hasse H, J. Phys. Chem. B, 112(51), 16664 (2008)
Wei-Zhong L, Cong C, Jian Y, Heat Tran. Asian Res., 37, 86 (2008)
Dang LX, Pettitt BM, J. Phys. Chem., 91, 3349 (1987)
Berendsen H, Grigera J, Straatsma T, J. Phys. Chem., 91, 6269 (1987)
Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M, J. Chem. Phys., 79, 926 (1983)
Jorgensen WL, Madura JD, Mol. Phys., 56, 1381 (1985)
Sindt JO, Alexander AJ, Camp PJ, J. Phys. Chem. B, 118(31), 9404 (2014)
Deublein S, Vrabec J, Hasse H, J. Chem. Phys., 136, 1 (2012)
Schnabel T, Molecular Modeling and Simulation of Hydrogen Bonding Pure Fluids and Mixtures, Logos Verlag, Berlin (2008).
Mark P, Nilsson L, J. Phys. Chem. A, 105(43), 9954 (2001)
Allen MP, Tildesley DJ, Computer Simulation of Liquids, Clarendon Press (1989).
Zhou R, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology, CRC Press, NewYork (2014).
Plimpton S, J. Comput. Phys., 117, 1 (1995)
Seminario JM, Design and Applications of Nanomaterials for Sensors, Springer Netherlands (2014).
Al Ghafri S, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 57(4), 1288 (2012)
Tabor D, Gases, Liquids and Solids: And Other States of Matter, Cambridge University Press, Cambridge (1991).
Catlow R, Parker SC, Allen MP, Computer Modelling of Fluids Polymers and Solids, Springer Netherlands (2012).
Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK, J. Phys. Chem. B, 111(48), 13570 (2007)
Chowdhuri S, Chandra A, J. Chem. Phys., 115(8), 3732 (2001)
Friedman AM, Kennedy JW, J. Am. Chem. Soc., 77, 4499 (1955)
Mills R, J. Phys. Chem., 61, 1631 (1957)
Parthasarathi R, Sun J, Dutta T, Sun N, Pattathil S, Konda NVSNM, Peralta AG, Simmons BA, Singh S, Biotechnol. Biofuels, 9, 1 (2016)
Chilavo AA, Vlcek L, Fluid Phase Equilib., 407, 84 (2015)
Lee HY, Manivannan V, Goodenough J, C.R. Acad. Sci., Ser. IIc: Chim., 2, 565 (1999)
Edelman I, Leibman J, Am. J. Med., 27, 256 (1959)
Shekhtar G, Rai M, Mahulkar NP, Karandikar PB, in Electronics and Communication Systems (ICECS), 2nd International Conference on, Coimbatore (2015).
Kim M, Oh I, Kim J, Phys. Chem. Chem. Phys., 17, 16367 (2015)
Rausch MH, Hopf L, Heller A, Leipertz A, Froba AP, J. Phys. Chem. B, 117(8), 2429 (2013)
Sundar LS, Ramana EV, Singh MK, Sousa ACM, Int. Commun. Heat Mass Transf., 56, 86 (2014)
Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, Int. J. Thermophys., 34, 1 (2013)
Dutta BK, Principle of Mass Transfer and Separation Process, PHI Learning Pvt. Ltd., New Dehli (2009).
Sherwood TK, Pigford RL, Wilke CR, Mass Transfer, McGraw-Hill (1975).
Kimmich R, Unrath W, Schnur G, Rommel E, J. Magn. Reson., 91, 136 (1991)
Meyer A, Phys. Rev. B, 81, 1 (2010)
Lascombe J, Molecular Motions in Liquids: Proceedings of the 24th Annual Meeting of the Societe de Chimie Physique Paris-Orsay, 2-6 July 1972, Springer Science & Business Media (2012).
Anderko A, Lencka MM, Ind. Eng. Chem. Res., 37(7), 2878 (1998)
Wang PM, Anderko A, Ind. Eng. Chem. Res., 42(14), 3495 (2003)
Chenyu Z, Shin YK, van Duin ACT, Fang H, Liu ZK, Acta Mater., 83, 102 (2015)
Zhang N, Shen Z, Chen C, He G, Hao C, J. Mol. Liq., 203, 90 (2015)
Landuzzi F, Pasquini L, Giusepponi S, Celino M, Montone A, Palla PL, Cleri F, J. Mater. Sci., 50(6), 2502 (2015)
Israelachvili JN, Intermolecular and Surface Forces, Elsevier Science (2015).
Li Z, Borodin O, Smith GD, Bedrov D, J. Phys. Chem. B, 119(7), 3085 (2015)
Xu K, Ji X, Chen C, Wan HZ, Miao L, Jiang JJ, Electrochim. Acta, 166, 142 (2015)
Rajput NN, Qu XH, Sa N, Burrell AK, Persson KA, J. Am. Chem. Soc., 137(9), 3411 (2015)
Kasemagi H, Ollikainen M, Brandell D, Aabloo A, Electrochim. Acta, 175, 47 (2015)
Duyail M, Villard A, Nguyen TN, Dufreche JF, J. Phys. Chem. B, 119(34), 11184 (2015)
Meier K, Laesecke A, Kabelac S, Int. J. Thermophys., 22, 161 (2001)
Furtado FA, Abreu CRA, Tavares FW, AIChE J., 61(9), 2881 (2015)
Guevara-Carrion G, Nieto-Draghi C, Vrabec J, Hasse H, J. Phys. Chem. B, 112(51), 16664 (2008)
Wei-Zhong L, Cong C, Jian Y, Heat Tran. Asian Res., 37, 86 (2008)
Dang LX, Pettitt BM, J. Phys. Chem., 91, 3349 (1987)
Berendsen H, Grigera J, Straatsma T, J. Phys. Chem., 91, 6269 (1987)
Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M, J. Chem. Phys., 79, 926 (1983)
Jorgensen WL, Madura JD, Mol. Phys., 56, 1381 (1985)
Sindt JO, Alexander AJ, Camp PJ, J. Phys. Chem. B, 118(31), 9404 (2014)
Deublein S, Vrabec J, Hasse H, J. Chem. Phys., 136, 1 (2012)
Schnabel T, Molecular Modeling and Simulation of Hydrogen Bonding Pure Fluids and Mixtures, Logos Verlag, Berlin (2008).
Mark P, Nilsson L, J. Phys. Chem. A, 105(43), 9954 (2001)
Allen MP, Tildesley DJ, Computer Simulation of Liquids, Clarendon Press (1989).
Zhou R, Molecular Modeling at the Atomic Scale: Methods and Applications in Quantitative Biology, CRC Press, NewYork (2014).
Plimpton S, J. Comput. Phys., 117, 1 (1995)
Seminario JM, Design and Applications of Nanomaterials for Sensors, Springer Netherlands (2014).
Al Ghafri S, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 57(4), 1288 (2012)
Tabor D, Gases, Liquids and Solids: And Other States of Matter, Cambridge University Press, Cambridge (1991).
Catlow R, Parker SC, Allen MP, Computer Modelling of Fluids Polymers and Solids, Springer Netherlands (2012).
Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK, J. Phys. Chem. B, 111(48), 13570 (2007)
Chowdhuri S, Chandra A, J. Chem. Phys., 115(8), 3732 (2001)
Friedman AM, Kennedy JW, J. Am. Chem. Soc., 77, 4499 (1955)
Mills R, J. Phys. Chem., 61, 1631 (1957)

