Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 14, 2016
Accepted December 20, 2016
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Mechanism underlying the effect of conventional drying on the grinding characteristics of Ximeng lignite
State Key Lab of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
jzliu@zju.edu.cn, loveowen@zju.edu.cn
Korean Journal of Chemical Engineering, April 2017, 34(4), 1250-1259(10)
https://doi.org/10.1007/s11814-016-0355-4
https://doi.org/10.1007/s11814-016-0355-4
Abstract
Same amounts of moisture were removed from Ximeng lignite (XL) with different particle size ranges pretreated at different drying temperatures. The effect of conventional drying on the grindability of the XLs was investigated. Increasing the drying temperature improved the grindability of all the samples. The results of scanning electron microscopy and mercury intrusion porosimetry revealed that the dominant mechanism enhancing the grindability of XL with high moisture was the pore structure destruction induced by the steam jet flow generated with the removal of moisture. Especially, the development of large fractures had a strong connection with the change in the grindability. According to the pore size distribution, the internal structure of the 2.5-4.0mm coal samples did not develop well under high drying temperature because of the exceedingly short heating time. Therefore, coal particle size, drying temperature, and heating time must be coordinated well to achieve the enhanced drying effect. The grindability of XL had a negative linear correlation with the pore volume fractal dimension, revealing the possibility of fractal dimension for the analysis of lignite grindability.
References
Yi M, Lee JW, Korean J. Chem. Eng., 33(12), 3401 (2016)
Choi H, Jo W, Kim S, Yoo J, Chun D, Rhim Y, Lim J, Lee S, Korean J. Chem. Eng., 31(12), 2151 (2014)
Kingman SW, Rowson NA, Miner. Eng., 11(11), 1081 (1998)
Csoke B, Bokanyi L, Bohm J, Petho S, Appl. Energy, 74(3-4), 359 (2003)
Zivotic D, Bechtel A, Sachsenhofer R, Gratzer R, Radic D, Obradovic M, Stojanovic K, Int. J. Coal Geol., 131, 344 (2014)
Vuthaluru HB, Brooke RJ, Zhang DK, Yan HM, Fuel Process. Technol., 81(1), 67 (2003)
Chelgani SC, Hower JC, Jorjani E, Mesroghli S, Bagherieh AH, Fuel Process. Technol., 89(1), 13 (2008)
Lester E, Kingman S, Dodds C, Fuel, 84(4), 423 (2005)
Harrison PC, Rowson NA, I Chem. E Res. Event, 38, 292 (1997)
Marland S, Han B, Merchant A, Rowson N, Fuel, 80, 1839 (2001)
Lytle J, Choi N, Prisbrey K, Int. J. Miner. Process., 36, 107 (1992)
Marland S, Han B, Merchant A, Ravson N, Fuel, 79, 1283 (2000)
Zhu JF, Liu JZ, Wu JH, Cheng J, Wang ZH, Zhou JH, Cen KF, Fuel, 162, 305 (2015)
Lester E, Kingman S, Dodds C, Fuel, 84(4), 423 (2005)
Zhu JF, Liu JZ, Wu JH, Cheng J, Zhou JH, Cen KF, Fuel Process. Technol., 130, 62 (2015)
Bevilacqua P, Ferrara G, Int. J. Miner. Process., 95, 117 (1996)
Mahamud MM, Novo MF, Fuel, 87(2), 222 (2008)
Cheng J, Wang X, Si TT, Zhou F, Zhou JH, Cen KF, Fuel Process. Technol., 149, 49 (2016)
Song H, Min L, Jun X, Sun LS, Li PS, Su S, Sun XX, Fuel, 83(10), 1307 (2004)
Zuo W, Zhao Y, He Y, Shi F, Duan C, Int. J. Mining Sci. Technol., 22, 121 (2012)
Lester E, Kingman S, Energy Fuels, 18(1), 140 (2004)
Samanli S, Fuel, 90(2), 659 (2011)
Wang X, He R, Korean J. Chem. Eng., 24(3), 466 (2007)
Friesen WI, Mikula RJ, J. Colloid Interface Sci., 120, 263 (1987)
Sing KSW, Williams RT, Adsorpt. Sci. Technol., 22, 773 (2004)
Lai J, Wang G, J. Nat. Gas Sci. Eng., 24, 185 (2015)
Li KW, Home RN, Geothermics, 35(2), 198 (2006)
Choi H, Jo W, Kim S, Yoo J, Chun D, Rhim Y, Lim J, Lee S, Korean J. Chem. Eng., 31(12), 2151 (2014)
Kingman SW, Rowson NA, Miner. Eng., 11(11), 1081 (1998)
Csoke B, Bokanyi L, Bohm J, Petho S, Appl. Energy, 74(3-4), 359 (2003)
Zivotic D, Bechtel A, Sachsenhofer R, Gratzer R, Radic D, Obradovic M, Stojanovic K, Int. J. Coal Geol., 131, 344 (2014)
Vuthaluru HB, Brooke RJ, Zhang DK, Yan HM, Fuel Process. Technol., 81(1), 67 (2003)
Chelgani SC, Hower JC, Jorjani E, Mesroghli S, Bagherieh AH, Fuel Process. Technol., 89(1), 13 (2008)
Lester E, Kingman S, Dodds C, Fuel, 84(4), 423 (2005)
Harrison PC, Rowson NA, I Chem. E Res. Event, 38, 292 (1997)
Marland S, Han B, Merchant A, Rowson N, Fuel, 80, 1839 (2001)
Lytle J, Choi N, Prisbrey K, Int. J. Miner. Process., 36, 107 (1992)
Marland S, Han B, Merchant A, Ravson N, Fuel, 79, 1283 (2000)
Zhu JF, Liu JZ, Wu JH, Cheng J, Wang ZH, Zhou JH, Cen KF, Fuel, 162, 305 (2015)
Lester E, Kingman S, Dodds C, Fuel, 84(4), 423 (2005)
Zhu JF, Liu JZ, Wu JH, Cheng J, Zhou JH, Cen KF, Fuel Process. Technol., 130, 62 (2015)
Bevilacqua P, Ferrara G, Int. J. Miner. Process., 95, 117 (1996)
Mahamud MM, Novo MF, Fuel, 87(2), 222 (2008)
Cheng J, Wang X, Si TT, Zhou F, Zhou JH, Cen KF, Fuel Process. Technol., 149, 49 (2016)
Song H, Min L, Jun X, Sun LS, Li PS, Su S, Sun XX, Fuel, 83(10), 1307 (2004)
Zuo W, Zhao Y, He Y, Shi F, Duan C, Int. J. Mining Sci. Technol., 22, 121 (2012)
Lester E, Kingman S, Energy Fuels, 18(1), 140 (2004)
Samanli S, Fuel, 90(2), 659 (2011)
Wang X, He R, Korean J. Chem. Eng., 24(3), 466 (2007)
Friesen WI, Mikula RJ, J. Colloid Interface Sci., 120, 263 (1987)
Sing KSW, Williams RT, Adsorpt. Sci. Technol., 22, 773 (2004)
Lai J, Wang G, J. Nat. Gas Sci. Eng., 24, 185 (2015)
Li KW, Home RN, Geothermics, 35(2), 198 (2006)

