ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 4, 2016
Accepted December 27, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparison of catalytic pyrolysis and gasification of Indonesian low rank coals using lab-scale bubble fluidized-bed reactor

Department of Energy Systems Research, Graduate School, Ajou University, Wonchon-dong, Yeongtong-gu, Suwon 16499, Korea 1Institute of Clean Coal Technology, East China University of Sci. & Tech., 130 Meilong Rd, Xuhui, Shanghai 200237, China
htkim@ajou.ac.kr
Korean Journal of Chemical Engineering, April 2017, 34(4), 1238-1249(12)
https://doi.org/10.1007/s11814-016-0366-1
downloadDownload PDF

Abstract

Various methods are used in the coal gasification technology for increasing the efficiency of low rank coal to the level of high rank coal through catalytic gasification. The catalyst used in the catalytic gasification process lowers the activation energy required in the coal gasification reaction. Our purpose was to determine the characteristics of the reaction conditions for producing syngas and the characteristics for comparison catalytic pyrolysis and gasification performance. Among various coals, we used Indonesian low rank coals (Indonesian lignite, MSJ, and Roto South) characterized by a large deposit volume and low cost. Catalytic pyrolysis and gasification experiments were run under the same experimental conditions (reactor type, reaction temperature, catalyst content, and catalyst input method), and the characteristics were compared. Taking the conversion and heating values into consideration, the optimal conditions for catalytic gasification in this study were an H2O/C mole ratio of 10, temperature of 800 °C, and 10 wt% catalyst impregnation.

References

International Energy Agency, Energy Technology Perspectives (2014).
World Energy Resources: Coal World Energy Council (2013).
Takarada T, Tamai Y, Tomita A, Fuel, 64, 1438 (1985)
Huhn F, Klein J, Juntgen H, Fuel, 62(2), 196 (1983)
Nahas NC, Fuel, 62, 239 (1983)
Wigmans T, Elfring R, Moulijn JA, Carbon, 21(1), 1 (1983)
McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217 (1983)
Huttinger KJ, Minges R, Fuel, 64(4), 486 (1985)
Lang RJ, Fuel, 65(10), 1324 (1986)
Takarada T, Ichinose S, Kato K, Fuel, 71(8), 883 (1992)
Kubiak H, Schroter HJ, Sulimma A, van Heek KH, Fuel, 62(2), 242 (1983)
Kuhn L, Plogmann H, Fuel, 62(2), 205 (1983)
Juntgen H, Fuel, 62, 234 (1983)
Hashimoto K, Miura K, Ueda T, Fuel, 65(11), 1516 (1986)
Yuh SJ, Wolf EE, Fuel, 62(6), 738 (1983)
Bruno G, Buroni M, Carvani L, Del Piero G, Passoni G, Fuel, 67(1), 67 (1988)
Tomita A, Watanabe Y, Takarada T, Ohtsuka Y, Tamai Y, Fuel, 64(6), 795 (1985)
Bakkerud PK, Catal. Today, 106(1-4), 30 (2005)
Handayani I, Triantoro A, Diniysti D, J. Novel Carbon Res. Sci., 7, 68 (2013)
Hippo EJ, Tandon D, Preprints of Papers-american Chemical Society Division Fuel Chemistry, 41, 216 (1996)
Zhang H, Dissertation at the Brigham Young University (2001).
Park ST, Choi YT, Sohn JM, Appl. Chem. Eng., 22(3), 312 (2011)
Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372 (2011)
McKee DW, Carbon, 20(1), 59 (1982)
Sams DA, Talverdian T, Shadman F, Fuel, 64(9), 1208 (1985)
Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114 (2005)
Dong L, Xu GW, Suda T, Murakami T, Fuel Process. Technol., 91(8), 882 (2010)
Scala F, Woodhead publishing (2013).
Lee WJ, Kim SD, Fuel, 74(9), 1387 (1995)
Wang J, Jiang MQ, Yao YH, Zhang YM, Cao JQ, Fuel, 88(9), 1572 (2009)
Kural OC (Ed.), Istanbul Technical University, Istanbul (1994).
Tristantini D, Supramono D, Suwignjo RK, Int. J. Technol., 6, 22 (2015)
Kumar A, Jones DD, Hanna MA, Energies, 2(3), 556 (2009)
Lee WJ, Kim SD, Song BH, Korean J. Chem. Eng., 18(5), 640 (2001)
Lee JM, Kim YJ, Kim SD, Appl. Therm. Eng., 18(11), 1013 (1998)
Chen L, Nolan R, Avadhany S, MIT (2009).
Li S, Ji XZ, Zhang XS, Gao L, Jin HG, Appl. Energy, 136, 98 (2014)
Wu YQ, Wang JJ, Wu SY, Huang S, Gao JS, Fuel Process. Technol., 92(3), 523 (2011)
Ahmed I, Gupta AK, Appl. Energy, 86(9), 1813 (2009)
Luo SY, Zhou YM, Yi CJ, Energy, 44(1), 391 (2012)
Garcia L, Salvador ML, Arauzo J, Bilbao R, Energy Fuels, 13(4), 851 (1999)
Lee JG, Kim JH, Park TJ, Kim SD, Fuel, 75(9), 1035 (1996)

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로