ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 3, 2016
Accepted February 2, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents

Unité de Recherche Thermique et Thermodynamique de Procédés Industriels, Ecole National d’Ingénieurs Monastir, 5009, Tunisia
Korean Journal of Chemical Engineering, April 2017, 34(4), 1037-1043(7), 10.1007/s11814-017-0008-2
downloadDownload PDF

Abstract

The removal of dye from industrial wastewater is one of the most important subjects in water pollution regulation. Successive adsorption/desorption cycles of a basic dye, methylene blue, on internal almond shell, olive stone and rye straw were investigated by using fixed bed column experiments to study the adsorption capacity to remove the MB and adsorbents regeneration efficiency. The adsorption breakthrough curves were predicted by the Thomas model, Yoon Nelson model, and Wolborska model and modified dose-response model by using nonlinear regressive analysis. The adsorption capacity values obtained by this model are compared with the experimental capacity, noting an error of 16%, 27.8% and 18.9% for IAS, OS and RS respectively, but these errors are minimized in the second cycle to 22.98% and 6.06% for OS and RS respectively. The results show that the modified dose response model is more suitable for the description of breakthrough curves for three adsorbents only in the first cycle. The IAS presents the highest adsorption capacity and the best regeneration efficiency. Conversely, the RS presents lower adsorption capacity, whereas is not the hardest to regenerate.

References

Ramade F, Dictionnaire encyclopedique des popullations Ediscience international (2000).
Gupta VK, Mohan D, Sharma S, Sharma M, Sep. Sci. Technol., 35(13), 2097 (2000)
Malik A, Grohmann E, (Eds.), Springer Science and Business Media (2011).
Kumar KV, Ramamurthi V, Sivanesan S, J. Colloid Interface Sci., 284(1), 14 (2005)
Reddy PMK, Mahammadunnisa S, Ramaraju B, Sreedhar B, Subrahmanyam C, Environ. Sci. Pollut. Res., 20, 4111 (2013)
Zhou CJ, Wu QL, Lei TZ, Negulescu JI, Chem. Eng. J., 251, 17 (2014)
Gomes RF, de Azevedo ACN, Pereira AGB, Muniz EC, Fajardo AR, Rodrigues FHA, J. Colloid Interface Sci., 454, 200 (2015)
Tseng WJ, Lin RD, J. Colloid Interface Sci., 428, 95 (2014)
Arshadi M, Faraji AR, Mehravar M, J. Colloid Interface Sci., 440, 91 (2015)
Kyzas GZ, Lazaridis NK, J. Colloid Interface Sci., 331(1), 32 (2009)
Sadaf S, Bhatti HN, Nausheen S, Amin M, J. Taiwan Inst. Chem. Eng., 47, 160 (2015)
Krika F, Benlahbib OEF, Desalin. Water Treat, 53(13), 3711 (2015)
Shabandokht M, Binaeian E, Tayebi HA, Desalin. Water Treatment, 1 (2016)
Tahir MA, Bhatti HN, Iqbal M, J. Environ. Chem. Eng., 4(2), 2431 (2016)
Aguedach A, Brosillon S, Morvan J, Lhadi EK, Appl. Catal. B: Environ., 57(1), 55 (2005)
Ghaedi M, Nasab AG, Khodadoust S, Rajabi M, Azizian S, J. Ind. Eng. Chem., 20(4), 2317 (2014)
Cottet L, Almeida CAP, Naidek N, Viante MF, Lopes MC, Debacher NA, Appl. Clay Sci., 95, 25 (2014)
Li C, Zhong H, Wang S, Xue J, Zhang Z, J. Ind. Eng. Chem., 23, 344 (2015)
Zaini MAA, Zakaria M, Setapar SM, Che-Yunus MA, J. Environ. Chem. Eng., 1(4), 1091 (2013)
Bouaziz F, Koubaa M, Kallel F, Chaari F, Driss D, Ghorbel RE, Chaabouni SE, Ind. Crop. Prod., 74, 903 (2015)
Subramaniam R, Ponnusamy SK, Water Res. Indust., 11, 64 (2015)
Banat F, Al-Asheh S, Al-Ahmad R, Bni-Khalid F, Bioresour. Technol., 98(16), 3017 (2007)
Benaissa H, J. Taibah University for Sci., 4, 31 (2010)
Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R, J. Hazard. Mater., 170(1), 357 (2009)
Hannachi H, Msallem M, Elhadj SB, El Gazzah M, C. R. Biol., 330(2), 135 (2007)
Albadarin AB, Mangwandi C, J. Environ. Manage., 164, 86 (2015)
Deveci H, Pehlivan E, 301 (2010).
Kaminski W, Tomczak E, Kuberski S, Global J. Adv. Pure Appl. Sci., 1 (2013)
Ardejani FD, Badii K, Limaee NY, Shafaei SZ, Mirhabibi AR, J. Hazard. Mater., 151(2-3), 730 (2008)
Kandah M, Chem. Eng. J., 84(3), 543 (2001)
Sotelo JL, Ovejero G, Rodriguez A, Alvarez S, Garcia J, Chem. Eng. J., 228, 102 (2013)
Woumfo ED, Siewe JM, Njopwouo D, J. Environ. Manage., 151, 450 (2015)
Choy KKH, Ko DCK, Cheung CW, Porter JF, McKay G, J. Colloid Interface Sci., 271(2), 284 (2004)
Geankoplis CJ, Transport Process and Unit Operations, PTR Prentice Hall, New York (1993).
Naddafi K, Nabizadeh R, Saeedi R, Mahvi AH, Vaezi F, Yaghmaeian K, Ghasri A, Nazmara S, J. Hazard. Mater., 147(3), 785 (2007)
Yoon YH, Nelson JH, The American Industrial Hygiene Association J., 45(8), 509 (1984)
Wolborska A, Water Res., 23(1), 85 (1989)
Han RP, Wang Y, Zhao X, Wang YF, Xie FL, Cheng JM, Tang MS, Desalination, 245(1-3), 284 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로