ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 29, 2016
Accepted October 24, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Improvement of methane uptake inside graphene sheets using nitrogen, boron and lithium-doped structures: A hybrid molecular simulation

Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
n.farhadian@um.ac.ir, na.farhadian@gmail.com
Korean Journal of Chemical Engineering, March 2017, 34(3), 876-884(9), 10.1007/s11814-016-0300-6
downloadDownload PDF

Abstract

We investigated the storage capacity of methane on the pristine and doped graphene sheets using hybrid molecular dynamics - grand canonical Monte Carlo simulation method. Methane adsorption on two parallel graphene sheets with various distances was estimated at various pressures. According to the isotherm curves, the maximum amount of adsorbed methane was observed for graphene sheets with a distance layer of 1.2 nm. This optimum structure was further doped separately with lithium, nitrogen and boron atoms in various atomic percentages to examine methane storage contents. Results showed that lithium and nitrogen-doped graphene sheets could enhance the methane storage capacity of graphene sheets whereas boron did not have any significant effect on the methane uptake. The minimum content of dopant atoms for lithium and nitrogen was estimated as 1/12 (lithium atoms/carbon atoms) and 18.5 atomic percentage, respectively, to meet new DOE’s target for methane uptake.

References

Duren T, Sarkisov L, Yaghi OM, Snurr RQ, Langmuir, 20(7), 2683 (2004)
Gadipelli S, Guo ZX, Prog. Mater. Sci., 69, 1 (2015)
Burchell T, M. Rogers. SAE Technical Paper (2000).
Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095 (2004)
Vicente JL, Albesa AG, Description of Adsorbed Phases on Carbon Surfaces: A Comparative Study of Several Graphene Models, INTECH Open Access Publisher (2011).
Solar C, Blanco AG, Vallone A, Sapag K, Natural Gas, 205 (2010)
Sudibandriyo M, Int. J. Eng. Technol., 11, 86 (2011)
Wang Y, Hashim M, Ercan C, Khawajah A, Othman R, 21st Annual Saudi-Japan Symposium, November (2011).
Denis PA, Chem. Phys., 353, 79 (2008)
Yamamoto M, Itoh T, Sakamoto H, Fujimori T, Urita K, Hattori Y, Ohba T, Kagita H, Kanoh H, Niimura S, Adsorption, 17, 643 (2011)
Kowalczyk P, Solarz L, Do DD, Samborski A, MacElroy JMD, Langmuir, 22(21), 9035 (2006)
Yamashita A, Mori Y, Oshima T, Baba Y, Carbon, 76, 469 (2014)
Takenaka S, Shigeta Y, Otsuka K, Chem. Lett., 32(1), 26 (2003)
Kim J, Maiti A, Lin LC, Stolaroff JK, Smit B, Aines RD, Nat. Commun., 4, 1694 (2013)
Gomez-Gualdron DA, Wilmer CE, Farha OK, Hupp JT, Snurr RQ, J. Phys. Chem. C, 118, 6941 (2014)
Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G, Nano Energy, 1, 195 (2012)
Lozano-Castello D, Alcaniz-Monge J, de la Casa-Lillo MA, Cazorla-Amoros D, Linares-Solano A, Fuel, 81(14), 1777 (2002)
Khorashadizadeh M, Shahrak MN, Shahsavand A, Korean J. Chem. Eng., 31(11), 1994 (2014)
Chen JJ, Li WW, Li XL, Yu HQ, Environ. Sci. Technol., 46, 10341 (2012)
Wang YG, Ercan C, Khawajah A, Othman R, AIChE J., 58(3), 782 (2012)
Heller R, Zoback M, J. Unconventional Oil and Gas Resources, 8, 14 (2014)
Giraldo L, Moreno-Pirajan JC, Mater. Sci. Appl., 2, 331 (2011)
Molashahi M, Hashemipour H, Korean J. Chem. Eng., 29(5), 601 (2012)
Syed-Hassan SSA, Zaini MSM, Korean J. Chem. Eng., 1 (2015)
Mosher K, He JJ, Liu YY, Rupp E, Wilcox J, Int. J. Coal Geol., 109, 36 (2013)
Zhao W, Meng QY, Advanced Materials Research, Trans Tech Publ (2013).
Kim BH, Kum GH, Seo YG, Korean J. Chem. Eng., 20(1), 104 (2003)
Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, J. Chem. Phys., 142, 234704 (2015)
Kumar R, Suresh VM, Maji TK, Rao C, Chem. Commun., 50, 2015 (2014)
Monemtabary S, Niasar MS, Jahanshahi M, Ghoreyshi AA, System, 2, 17 (2013)
Rasoolzadeh M, Fatemi S, Gholamhosseini M, Moosaviyan MA, Iran J. Chem. Chem. Eng., 27 (2008)
Zhang XR, Wang WC, Fluid Phase Equilib., 194, 289 (2002)
Lee KH, Oh J, Son JG, Kim H, Lee SS, ACS Appl. Mater. Interfaces, 6, 6361 (2014)
Wang L, Sofer Z, Luxa J, Pumera M, J. Mater. Chem. C, 2, 2887 (2014)
Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J, J. Mater. Chem., 21, 8038 (2011)
Li XL, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ, J. Am. Chem. Soc., 131(43), 15939 (2009)
Bai S, Shen X, RSC Adv., 2, 64 (2012)
Zhu Z, Zheng Q, Appl. Therm. Eng., 108, 605 (2016)
Dai J, Yuan J, Giannozzi P, Appl. Phys. Lett., 95, 232105 (2009)
Qu L, Liu Y, Baek JB, Dai L, ACS Nano, 4, 1321 (2010)
Gopalakrishnan K, Moses K, Dubey P, Rao C, J. Mol. Struct., 1023, 2 (2012)
Wang Y, Feng Y, Meng G, Dong X, Huang X, Phys. Status Solidi B. (2015)
Fan X, Zheng W, Kuo JL, ACS Appl. Mater. Interfaces, 4, 2432 (2012)
Zhao L, Levendorf M, Goncher S, Schiros T, Palova L, Zabet-Khosousi A, Rim KT, Gutierrez C, Nordlund D, Jaye C, Nano Lett., 13, 4659 (2013)
Yang Z, Cao D, J. Phys. Chem. C, 116, 12591 (2012)
Lan J, Cao D, Wang W, Langmuir, 26, 220 (2009)
Dimitrakakis GK, Tylianakis E, Froudakis GE, Nano Lett., 8, 3166 (2008)
Wu P, Qian Y, Du P, Zhang H, Cai C, J. Mater. Chem., 22, 6402 (2012)
Stadie NP, California Institute of Technology, PhD (2013).
Liu XQ, Xue Y, Tian ZY, Mo JJ, Qiu NX, Chu W, Xie HP, Appl. Surf. Sci., 285, 190 (2013)
Ewels C, Glerup M, Krstic V, Basiu V, Basiuk E, In: Chemistry of Carbon Nanotubes, American Scientific Publishers (2007).
Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elias AL, Cruz-Silva R, Gutierrez HR, Sci. Rep., 2 (2012).
Tachikawa H, Iyama T, Azumi K, Jpn. J. Appl. Phys., 50, 01BJ03 (2011)
Kumar KV, Preuss K, Lu L, Guo ZX, Titirici MM, J. Phys. Chem. C, 119, 22310 (2015)
Niu LY, Li ZP, Hong W, Sun JF, Wang ZF, Ma LM, Wang JQ, Yang SR, Electrochim. Acta, 108, 666 (2013)
Xu X, Yuan T, Zhou YK, Li YW, Lu JM, Tian XH, Wang DL, Wang J, Int. J. Hydrog. Energy, 39(28), 16043 (2014)
Hassani A, Mosavian MTH, Ahmadpour A, Farhadian N, Comput. Theor. Chem., 1084, 43 (2016)
Zheng JM, Ren ZY, Guo P, Fang L, Fan J, Appl. Surf. Sci., 258(5), 1651 (2011)
Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday JN, Drew HD, Nat. Commun., 5 (2014)
Yang S, Feng X, Wang X, Mullen K, Angew. Chem.-Int. Edit., 50, 5339 (2011)
Yang G, Han H, Li T, Du C, Carbon, 50, 3753 (2012)
Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y, Nanoscale, 5, 3457 (2013)
Zhou M, Li X, Cui J, Liu T, Cai T, Zhang H, Guan S, Int. J. Electrochem. Sci., 7, 9984 (2012)
Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li WX, Fu Q, Ma X, Xue Q, Chem. Mater., 23, 1188 (2011)
Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH, Tseng CM, Lee YH, Liang CT, Li LJ, ACS Nano, 7, 6522 (2013)
Yeom DY, Jeon W, Tu NDK, Yeo SY, Lee SS, Sung BJ, Chang H, Lim JA, Kim H, Sci. Rep., 5 (2015)
Zhang YZ, Sun RX, Luo BM, Wang LJ, Electrochim. Acta, 156, 228 (2015)
Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD, Anal. Chem., 86, 4423 (2014)
Lin T, Huang F, Liang J, Wang Y, Energy Environ. Sci., 4, 862 (2011)
Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH, J. Mater. Chem., 22, 390 (2012)
Sahoo M, Sreena KP, Vinayan BP, Ramaprabhu S, Mater. Res. Bull., 61, 383 (2015)
Sugawara K, Kanetani K, Sato T, Takahashi T, AIP Advances, 1, 022103 (2011)
Han SS, Jang SS, Chem. Commun., 5427 (2009)
Malek K, Sahimi M, J. Chem. Phys., 132, 014310 (2010)
van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers A, Feenstra KA, van Drunen R, Gromacs User Manual (2010).
T. a.C.B. Group, VMD User’s Guide (2012).
Lithoxoos GP, Peristeras LD, Boulougouris GC, Economou IG, Mol. Phys., 110, 1153 (2012)
Chandrasekhar J, Spellmeyer DC, Jorgensen WL, J. Am. Chem. Soc., 106, 903 (1984)
Peng Z, Ewig CS, Hwang MJ, Waldman M, Hagler AT, J. Phys. Chem. A, 101, 7243 (1997)
Kalugin ON, Prezhdo OV, Chaban VV, Microscopic structure and dynamics of molecular liquids and electrolyte solutions confined by Carbon NanoTubes: Molecular dynamics simulations, INTECH Open Access Publisher (2011).
Rappe AK, Casewit CJ, Colwell K, Iii WG, Skiff W, J. Am. Chem. Soc., 114, 10024 (1992)
Mao AH, Pappu RV, J. Chem. Phys., 137, 064104 (2012)
Kalugin ON, Adya AK, Volobuev MN, Kolesnik YV, Phys. Chem. Chem. Phys., 5, 1536 (2003)
Chaban V, Kalugin O, J. Mol. Liq., 145, 145 (2009)
Han SS, van Duin AC, Goddard WA, Lee HM, J. Phys. Chem. A, 109, 4575 (2005)
Cuadros F, Cachadina I, Ahumada W, Mol. Eng., 6, 319 (1996)
Ortiz L, Kuchta B, Firlej L, Roth M, Wexler C, Mater. Res. Express, 3, 055011 (2016)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로