ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 29, 2017
Accepted August 2, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design

Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran 1Department of Environmental Health Engineering & Research Centre for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran 2Social Determinants of Health Research Center (SDHRC), Faculty of Public Health, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran 3Faculty of Chemistry, Bu-Ali-Sina University, Hamadan, Iran 4Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
mr.samarghandi@umsha.ac.ir
Korean Journal of Chemical Engineering, November 2017, 34(11), 2999-3008(10), 10.1007/s11814-017-0212-0
downloadDownload PDF

Abstract

Performance of electrodegradation process using stainless steel net electrodes was explored for removal of tetracycline (TC) from synthetic wastewater in a laboratory batch study. Main effects of various operating parameters, such as initial TC concentration (20 and 100mg/L), reaction pH (3.0 and 9.0), current density (4.1 and 17.1mA/cm2), agitation speed (250 and 750 rpm), and electrolysis time (20, 50, and 80 min), and their interactions on the TC removal efficiency, were optimized by means of a five-factor and two-level factorial experimental design methodology. The significance of responses obtained from the proposed design (sixteen experimental runs under batch mode conditions) was statistically evaluated by preparing a Pareto chart, half-normal probability plot, and plots of main effects and their interactions (herein referred to as Factions) within the framework of the analysis of variance (ANOVA). The statistical results corroborated with 95% certainty that TC concentration, pH, and current density showed the largest effects (absolute values) on the TC removal efficiency. Besides the most effective Factions, a sodium sulfate (used as supporting electrolyte) dose of 1 g/200 cc was determined as the optimum value for the studied process. Under the conditions of an initial TC concentration=20 mg/L, a reaction pH=3.0, current density=17.1mA/cm2, an agitation speed=250 rpm, and an electrolysis time=20min, about 70% of TC could be successfully removed from the simulated wastewater. Findings of this experimental study clearly confirmed the applicability of the electrodegradation process for the removal of a broad spectrum antibacterial agent like TC, and also demonstrated the effectiveness of the factorial design methodology before transferring the obtained experimental knowledge for a full-scale facility.

References

Zhang H, Liu P, Feng Y, Yang F, Marine Pollution Bulletin, 73, 282 (2013)
Hou GY, Hao XY, Zhang R, Wang J, Liu RT, Liu CG, Bioresour. Technol., 212, 20 (2016)
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sanchez-Melsio A, Borrego CM, Barcelo D, Balcazar JL, Water Res., 69, 234 (2015)
Garcia-Rodriguez A, Matamoros V, Fontas C, Salvado V, Chemosphere, 90, 2297 (2013)
Hou LW, Zhang H, Xue XF, Sep. Purif. Technol., 84, 147 (2012)
Brinzila CI, Pacheco MJ, Ciriaco L, Ciobanu RC, Lopes A, Chem. Eng. J., 209, 54 (2012)
Yi QZ, Gao YX, Zhang H, Zhang HF, Zhang Y, Yang M, Chem. Eng. J., 300, 139 (2016)
Ou J, Mei M, Xu X, J. Solid State Chem., 238, 182 (2016)
Li JH, Han MS, Guo Y, Wang F, Meng LJ, Mao DJ, Ding SS, Sun C, Appl. Catal. A: Gen., 524, 105 (2016)
Liu Q, Zheng Y, Zhong L, Cheng X, J. Environ. Sci., 28, 29 (2015)
Norvill ZN, Toledo-Cervantes A, Blanco S, Shilton A, Guieysse B, Munoz R, Bioresour. Technol., 232, 35 (2017)
Zhu XD, Liu YC, Qian F, Zhou C, Zhang SC, Chen JM, Bioresour. Technol., 154, 209 (2014)
Teh CY, Budiman PM, Shak KPY, Wu TY, Ind. Eng. Chem. Res., 55(16), 4363 (2016)
Yan L, Wang YF, Li J, Ma HZ, Liu HJ, Li T, Zhang YJ, Desalination, 341, 87 (2014)
Ferrag-Siagh F, Fourcade F, Soutrel I, Ait-Amar H, Djelal H, Amrane A, J. Chem. Technol. Biotechnol., 88(7), 1380 (2013)
Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA, Appl. Catal. B: Environ., 140, 92 (2013)
Duan F, Li Y, Cao H, Wang Y, Crittenden JC, Zhang Y, Chemosphere, 125, 205 (2015)
Daghrir R, Drogui P, Tshibangu J, Sep. Purif. Technol., 131, 79 (2014)
Zheng SQ, Yang FF, Chen SL, Liu L, Xiong Q, Yu T, Zhao F, Schroder U, Hou HQ, J. Power Sources, 284, 252 (2015)
Yuksel E, Eyvaz M, Gurbulak E, Environ. Prog., 32, 60 (2013)
Pulkka S, Martikainen M, Bhatnagar A, Sillanpaa M, Sep. Purif. Technol., 132, 252 (2014)
Brillas E, Sires I, TrAC Trends in Analytical Chemistry, 70, 112 (2015)
Gerayeli F, Ghojavand F, Mousavi SM, Yaghmaei S, Amiri F, Sep. Purif. Technol., 118, 151 (2013)
Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, Zaidul ISM, J. Food Eng., 124, 105 (2014)
Wong WH, Lee WX, Ramanan RN, Tee LH, Kong KW, Galanakis CM, Sun J, Prasad KN, Ind. Crop. Prod., 63, 238 (2015)
Huyskens C, Helsen J, de Haan AB, Desalination, 328, 8 (2013)
Wu TY, Mohammad AW, Jahim JM, Anuar N, J. Chem. Technol. Biotechnol., 84(9), 1390 (2009)
Shak KPY, Wu TY, Ind. Crop. Prod., 76, 1169 (2015)
Samarghandi MR, Khiadani M, Foroughi M, Nasab HZ, Environ. Sci. Pollut. Res., 23, 887 (2016)
Sepehr MN, Yetilmezsoy K, Marofi S, Zarrabi M, Ghaffari HR, Fingas M, Foroughi M, J. Taiwan Inst. Chem. Eng., 45, 2786 (2014)
Shokoohi R, Asgari G, Leili M, Khiadani M, Foroughi M, Hemmat MS, Int. J. Environ. Sci. Technol., 14, 841 (2017)
Zhang L, Song XY, Liu XY, Yang LJ, Pan F, Lv JN, Chem. Eng. J., 178, 26 (2011)
Yehya T, Chafi M, Balla W, Vial C, Essadki A, Gourich B, Sep. Purif. Technol., 132, 644 (2014)
Khiadani M, Foroughi M, Amin MM, Desalin. Water Treat., 52, 678 (2014)
Nidheesh PV, Gandhimathi R, Desalination, 299, 1 (2012)
Zheng T, Wang Q, Shi Z, Fang Y, Shi S, Wang J, Wu C, J. Environ. Sci., 50, 21 (2016)
Benredouane S, Berrama T, Doufene N, Chemometrics Intell. Lab. Syst., 155, 128 (2016)
David C, Arivazhagan M, Tuvakara F, Ecotox. Environ. Safe., 121, 142 (2015)
Govindan K, Noel M, Mohan R, J. Water Process Eng., 6, 58 (2015)
Ezechi EH, Isa MH, bin Mohamed Kutty SR, Ahmed Z, J. Environ. Chem. Eng., 3, 1962 (2015)
Jeon YS, Yang JS, Park ER, Yang JW, Baek K, J. Taiwan Inst. Chem. Eng., 64, 142 (2016)
Gerek EE, Yılmaz S, Koparal AS, Gerek ON, J. Water Process Eng., (2017) (In Press, Corrected Proof).
Liakos TI, Sotiropoulos S, Lazaridis NK, J. Environ. Chem. Eng., 5, 699 (2017)
Long YJ, Li HN, Xing X, Ni JR, Chem. Eng. J., 325, 360 (2017)
Zhang C, Jiang YH, Li YL, Hu ZX, Zhou L, Zhou MH, Chem. Eng. J., 228, 455 (2013)
Kakavandi B, Takdastan A, Jaafarzadeh N, Azizi M, Mirzaei A, Azari A, J. Photochem. Photobiol. A-Chem., 314, 178 (2016)
Design Expert Software, In: Trial Version 8.0.7.1 User’s Guide (2011).
Okogbenin EA, Okogbenin OB, Obibuzor JU, Emoghene AO, Int. J. Stat. Appl., 4, 117 (2014)
Eigenvector Documentation Wiki (2014), Half-normal probability plot, http://wiki.eigenvector.com/index.php?title=Half-Normal_Probability_Plot. Accessed in July 2017.
Dholariya YN, Bansod YB, Vora RM, Mittal SS, Shirsat AE, Bhingare CL, Int. J. Pharm., 4, 93 (2014)
Gonzalez T, Dominguez JR, Palo P, Sanchez-Martin J, Cuerda-Correa EM, Desalination, 280(1-3), 197 (2011)
Banala VT, Srinivasan B, Rajamanickam D, Veerbadraiah BB, Varadarajan M, ISRN Pharmaceutics, 1 (2013).
Yetilmezsoy K, Demirel S, Vanderbei RJ, J. Hazard. Mater., 171(1-3), 551 (2009)
Zhang H, Li Y, Wu X, Zhang Y, Zhang D, Waste Manage., 30, 2096 (2010)
Minitab I. MINITAB Release 17: Statistical Software for Windows. Minitab Inc., U.S.A. (2014).
-Ruiz BG, Gomez-Lavin S, Diban N, Boiteux V, Colin A, Dauchy X, Urtiaga A, Chem. Eng. J., 322, 196 (2017)
Comninellis C, Doyle M, Winnick J(Eds.), Proceedings of the International Symposium held during the 2001 Joint International Meeting of the ECS and ISE in San Francisco, California, U.S.A. (2001).
Wilson S, Farone W, Leonard G, Birnstingl J, Leombruni A, Regenesis Bioremediation Products Inc., San Clemente, CA, U.S.A. (2013).
Diallo MS, Fromer NA, Jhon MS(Eds.), Springer Science & Business, New York, U.S.A. (2014).
Yehya T, Chafi M, Balla W, Vial C, Essadki A, Gourich B, Sep. Purif. Technol., 132, 644 (2014)
Wisniak J, Stefanovic S, Rubin E, Hoffman Z, Talmon Y, J. Am. Oil Chem. Soc., 48, 379 (1971)
Asaithambi P, Susree M, Saravanathamizhan R, Matheswaran M, Desalination, 297, 1 (2012)
Khandegar V, Saroha AK, Chin. J. Chem. Eng., 20(3), 439 (2012)
Wang C, Huang YK, Zhao Q, Ji M, Chem. Eng. J., 243, 1 (2014)
Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A, Chem. Eng. J., 221, 418 (2013)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로