ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 28, 2016
Accepted July 2, 2017
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Statistical optimization for lithium silicate catalyzed production of biodiesel from waste cooking oil

Department of Chemistry, Sree Neelakanta Government Sanskrit College Pattambi (Affiliated to University of Calicut), Palakkad-679306, Kerala, India 1Department of Applied Chemistry, Cochin University of Science and Technology, Cochin 22, Kerala, India 2Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
Korean Journal of Chemical Engineering, November 2017, 34(11), 2840-2851(12), 10.1007/s11814-017-0179-x
downloadDownload PDF

Abstract

Lithium silicate is one of the suitable heterogeneous catalysts for biodiesel production. The possibilities of large number of combinations of different reaction parameters make the optimization of biodiesel production process over various heterogeneous catalysts highly tedious, necessitating the development of alternate strategies for parameter optimization. Here, Box-Behnken design (BBD) coupled with response surface methodology (RSM) is employed to optimize the process parameters required for the production of biodiesel from waste cooking oil using lithium silicate as catalyst. Simple method of impregnation was performed for the material preparation and the catalyst was analyzed using different techniques. It was found that the activity is directly proportional to the basicity data obtained from temperature programmed desorption (TPD) of CO2 over various catalyst systems. The material exhibits macroporous morphology and the major crystalline phase of the most active catalyst was found to be Li2SiO3. The effects of different reaction parameters were studied and a biodiesel yield of 100% was obtained under the predicted optimum reaction conditions of methanol : oil molar ratio 15 : 1, catalyst amount 7 wt%, reaction temperature 55 °C and reaction time 2.5 h. The validation experiments showed a correlation coefficient of 0.95 between the predicted and experimental yield of biodiesel, which indicates the high significance of the model. The fuel properties of biodiesel obtained under the optimum conditions met the specifications as mentioned in ASTM D6751 and EN 14214 standards. Catalyst heterogeneity and low reaction temperature are the major attractions of the present biodiesel preparation strategy.

References

Ghiaci M, Aghabarari B, Gil A, Fuel, 90(11), 3382 (2011)
Akia M, Yazdani F, Motaee E, Han D, Arandiyan H, Biofuel Res. J., 1, 16 (2014)
Endalew AK, Kiros Y, Zanzi R, Biomass Bioenerg., 35(9), 3787 (2011)
Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E, Biotechnol. Adv., 27, 398 (2009)
Mostafaei M, Ghobadian B, Barzegar M, Banakar A, Ultrason. Sonochem., 27, 54 (2015)
Chanatip S, Surachai K, Chaiyan C, Prasert R, Ruengwit S, Metta C, Arabian J. Chem. (2015), DOI:10.1016/j.arabjc. 2014.12.034.
Abreu FR, Alves MB, Macedo CCS, Zara LF, Suarez PAZ, J. Mol. Catal. A-Chem., 227(1-2), 263 (2005)
Vicente G, Coteron A, Martinez M, Aracil J, Ind. Crops Products., 8, 29 (1998)
Oha PP, Lau HLN, Chen J, Chong MF, Choo YM, Renew. Sust. Energ. Rev., 16, 5131 (2012)
Chakraborty R, Bepari S, Banerjee A, Chem. Eng. J., 165(3), 798 (2010)
Afgan NH, Carvalho MG, Energy, 27(8), 739 (2002)
Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ, Ind. Eng. Chem. Res., 38(8), 2927 (1999)
Long T, Deng YF, Li GH, Gan SC, Chen J, Fuel Process. Technol., 92(7), 1328 (2011)
Endalew AK, Kiros Y, Zanzi R, Energy, 36(5), 2693 (2011)
Ng JH, Ng HK, Gan S, Clean Technologies Environ. Policy, 12, 459 (2010)
Ng JH, Ng HK, Gan S, Clean Technologies Environ. Policy, 12, 213 (2010)
Zhang JH, Chen SX, Yang R, Yan YY, Fuel, 89(10), 2939 (2010)
Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN, Appl. Catal. A: Gen., 363(1-2), 1 (2009)
Chouhan APS, Sarma AK, Renew. Sust. Energ. Rev., 15, 4378 (2011)
Harrington KJ, D’Arcy-Evans C, Ind. Eng. Chem. Process Des. Dev., 24, 314 (1985)
Graille J, Lozano P, Pioch D, Geneste P, Oleagineux, 41, 457 (1986)
Akbar E, Binitha N, Yaakob Z, Kamarudin SK, Salimon J, Green Chem., 11, 1862 (2009)
Ramos MJ, Casas A, Rodriguez L, Romero R, Perez A, Appl. Catal. A: Gen., 346(1-2), 79 (2008)
Xie WL, Peng H, Chen LG, Appl. Catal. A: Gen., 300(1), 67 (2006)
Samart C, Sreetongkittikul R, Sookman C, Fuel Process. Technol., 90(7-8), 922 (2009)
Jeon H, Kim DJ, Kim SJ, Kim JH, Fuel Process. Technol., 116, 325 (2013)
Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J, Fuel, 87(12), 2798 (2008)
Wang JX, Chen KT, Huang ST, Chen KT, Chen CC, J. American Oil Chem. Soc., 89, 1619 (2012)
Chen KT, Wang JX. Dai YM, Wang PH, Liou CY, Nien CW, Wu JS, Chen CC, J. Taiwan Institute Chem. Engineers, 44, 622 (2013)
Dai YM, Chen KT, Wang PH, Chen CC, Adv. Powder Technol., 27(6), 2432 (2016)
Wang JX, Chen KT, Wu JS, Wang PH, Huang ST, Chen CC, Fuel Process. Technol., 104, 167 (2012)
Hindryawati N, Maniam GP, Karim MR, Chong KF, Eng. Sci. Technol., Int. J., 17, 95 (2014)
Wang JX, Chen KT, Wen BZ, Liao YHB, Chen CC, J. Taiwan Institute Chem. Engineers, 43, 215 (2012)
Dai YM, Wu JS, Chen CC, Chen KT, Chem. Eng. J., 280, 370 (2015)
Dai YM, Kao IH, Chen CC, J. Taiwan Institute Chem. Eng., 70, 260 (2016)
Dai YM, Hsieh JH, Chen CC, J. Chinese Chem. Soc., 61, 803 (2014)
Dai YM, Chen KT, Chen CC, Chem. Eng. J., 250, 267 (2014)
Freedman B, Butterfield RO, Pryde EH, J. American Oil Chem. Soc., 63, 1375 (1986)
Freedman B, Pryde EH, Mounts TL, J. American Oil Chem. Soc., 61, 1638 (1984)
Schuchardta U, Serchelia R, Vargas RM, J. Braz. Chem. Soc., 9, 199 (1998)
Schwab AW, Baghy MO, Freedman B, Fuel, 66, 1372 (1987)
Kawashima A, Matsubara K, Honda K, Bioresour. Technol., 100(2), 696 (2009)
Silva CCCM, Ribeiro NFP, Souza MMVM, Aranda DAG, Fuel Process. Technol., 91(2), 205 (2010)
Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J, Fuel, 87(12), 2798 (2008)
Shu Q, Zhang Q, Xu GH, Nawaz Z, Wang DZ, Wang JF, Fuel Process. Technol., 90(7-8), 1002 (2009)
Watkins RS, Lee AF, Wilson K, Green Chem., 6, 335 (2004)
Raqeeb MA, Bhargavi R, J. Chem. Pharmaceutical Res., 7, 670 (2015)
Melero J, Iglesias J, Morales G, Green Chem., 11, 1285 (2009)
Faisal PA, Hareesh ES, Priji P, Unni KN, Sajith S, Sreedevi S, Josh MS, Benjamin S, Adv. Enzyme Res., 2, 125 (2014)
Atapour M, Kariminia HR, Moslehabadi PM, Process Saf. Environ. Protect., 92(2), 179 (2014)
Farag HA, El-Maghraby A, Taha NA, Fuel Process. Technol., 92(3), 507 (2011)
Olutoye MA, Hameed BH, Appl. Catal. A: Gen., 450, 57 (2013)
Wang JX, Chen KT, Wu JS, Wang PH, Huang ST, Chen CC, Fuel Process. Technol., 104, 167 (2012)
Marcolli C, Calzaferri G, J. Phys. Chem. B, 101(25), 4925 (1997)
Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M, Inter. Nano Lett., 2, 1 (2012)
Vasconcelos DCL, Orefice RL, Vasconcelos WL, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 447, 77 (2007)
Ortiz-Landerosa J, Lopez-Juarezb R, Romero-Ibarrac IC, Pfeiffer H, Balmori-Ramireza H, Gomez-Yanez C, Particuology, 24, 129 (2015)
Mondragon-Gutierrez G, Cruz D, Pfeiffer H, Bulbulian S, Res. Lett. Mater. Sci. (2008), DOI:10.1155/2008/908654.
Li X, Yang H, Cryst. Eng. Commun., 16, 4501 (2014)
Hesse KF, Acta Crystallogr. Sect. B-Struct. Sci., 33, 901 (1977)
Wen G, Yan ZF, Smith M, Zhang P, Wen B, Fuel, 89(8), 2163 (2010)
Liu Y, Liu T, Wang XF, Xu L, Yan YJ, Energy Fuels, 25(3), 1206 (2011)
Wang BY, Li SF, Tian SJ, Feng RH, Meng YL, Fuel, 104, 698 (2013)
Hamze H, Akia M, Yazdani F, Process Saf. Environ. Protect., 94, 1 (2015)
Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K, Chem. Eng. J., 145(3), 468 (2009)
Lee HV, Yunus R, Juan JC, Taufiq-Yap YH, Fuel Process. Technol., 92(12), 2420 (2011)
Omar WNNW, Amin NAS, Biomass Bioenerg., 35(3), 1329 (2011)
Kansedo J, Lee KT, Bhatia S, Biomass Bioenerg., 33(2), 271 (2009)
Kansedo J, Lee KT, Chem. Eng. J., 214, 157 (2013)
Zabeti M, Daud WMAW, Aroua MK, Appl. Catal. A: Gen., 366(1), 154 (2009)
Martinez SL, Romero R, Natividad R, Gonzalez J, Catal. Today, 220, 12 (2014)
Rashtizadeh E, Farzaneh F, Talebpour Z, Bioresour. Technol., 154, 32 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로