ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 29, 2014
Accepted December 17, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hydrothermal carbonization of oil palm shell

1Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 2Department of Petroleum and Chemical Engineering, Faculty of Engineering, Institut Teknologi Brunei, Tungku Gadong, P. O. Box 2909, Brunei Darussalam 3Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 4Department of Chemical Engineering, Dawood University of Engineering and Technology, M.A Jinnah Road, Karachi, Pakistan 5Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia, Korea 6Department of Chemical and Petroleum Engineering, Faculty of Engineering, UCSI University, Kuala Lumpur 56000, Malaysia
Korean Journal of Chemical Engineering, September 2015, 32(9), 1789-1797(9), 10.1007/s11814-014-0376-9
downloadDownload PDF

Abstract

Palm shell is one of the most plentiful wastes of the palm oil mill industry. This study identifies the capability of hydrothermal carbonization process (HTC) to convert palm shell into high energy hydrochar. The influence of reaction time and reaction temperature of the HTC process was investigated. The process parameters selected were temperature 200 oC to 240 oC, time 10 to 60min, and water to biomass ratio was fixed at 10 : 1 by weight %. Fourier transform infrared (FTIR), elemental, proximate, Burner Emmett and Teller (BET), thermo-gravimetric (TGA) analyses were performed to characterize the product and the feed. The heating value (HHV) was increased from 12.24 MJ/kg (raw palm shell) to 22.11 MJ/kg (hydrochar produced at 240 oC and 60 min). The hydrochar yield exhibited a higher degree inverse proportionality with temperature and reaction time. Elemental analysis revealed an increase in carbon percentage and a proportional decrease in hydrogen and oxygen contents which caused higher value of HHV. The dehydration and decarboxylation reactions take place at higher temperatures during HTC resulting in the increase of carbon and decrease in oxygen values of hydrochar. The FESEM results reveal that the structure of raw palm shell was decomposed by HTC process. The pores on the surface of hydrochar increased as compared to the raw palm shell.

References

Shuit SH, Tan KT, Lee KT, Kamaruddin AH, Energy, 34(9), 1225 (2009)
Demirbas A, Energy Conv. Manag., 42(11), 1357 (2001)
Twidell J, Renew. Energy World, 1, 38 (1998)
Bridgwater A, Peacocke G, Renew. Sust. Energ. Rev., 4, 1 (2000)
Maher KD, Bressler DC, Bioresour. Technol., 98(12), 2351 (2007)
Hamelinck CN, van Hooijdonk G, Faaij APC, Biomass Bioenerg., 28(4), 384 (2005)
WYMAN CE, Bioresour. Technol., 50(1), 3 (1994)
Mubarak NM, Kundu A, Sahu JN, Abdullah EC, Jayakumar NS, Biomass Bioenerg., 61, 265 (2014)
Basiron Y, Eur. J. Lipid. Sci. Technol., 109, 289 (2007)
Goh CS, Tan KT, Lee KT, Bhatia S, Bioresour. Technol., 101(13), 4834 (2010)
Mohamed AR, Lee KT, Energy Policy, 34(15), 2388 (2006)
Abnisa F, Daud WMAW, Husin WNW, Sahu JN, Biomass Bioenerg., 35(5), 1863 (2011)
Jamari SS, Howse JR, Biomass Bioenerg., 47, 82 (2012)
Mae K, Hasegawa I, Sakai N, Miura K, Energy Fuels, 14(6), 1212 (2000)
Kean CW, Sahu JN, Daud WW, BioResources., 8, 1831 (2013)
Parshetti GK, Hoekman SK, Balasubramanian R, Bioresour. Technol., 135, 683 (2013)
Salema AA, Ani FN, J. Anal. Appl. Pyrolysis, 96, 162 (2012)
Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B, Biomass Bioenerg., 59, 264 (2013)
Lu XW, Pellechia PJ, Flora JRV, Berge ND, Bioresour. Technol., 138, 180 (2013)
Kruse A, Funke A, Titirici MM, Curr. Opin. Chem. Biol., 17, 515 (2013)
Xiu S, Shahbazi A, Shirley V, Cheng D, J. Anal. Appl. Pyrolysis, 88, 73 (2010)
Xiao LP, Shi ZJ, Xu F, Sun RC, Bioresour. Technol., 118, 619 (2012)
Lu XW, Pellechia PJ, Flora JRV, Berge ND, Bioresour. Technol., 138, 180 (2013)
Liu Z, Balasubramanian R, Proced. Environ. Sci., 16, 159 (2012)
Liu Z, Quek A, Hoekman SK, Balasubramanian R, Fuel, 103, 943 (2012)
Tekin K, Karagoz S, Bekta S, Renew. Sust. Energ. Rev., 40, 673 (2014)
Tian C, Li B, Liu Z, Zhang Y, Lu H, Renew. Sust. Energ. Rev., 38, 933 (2014)
Zou SP, Wu YL, Yang MD, Kaleem I, Chun L, Tong JM, Energy, 35(12), 5406 (2010)
McKendry P, Bioresour. Technol., 83(1), 37 (2002)
Chang SH, Biomass Bioenerg., 62, 174 (2014)
Kang SM, Li XH, Fan J, Chang J, Ind. Eng. Chem. Res., 51(26), 9023 (2012)
Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S, Environ. Sci. Technol., 45, 5696 (2011)
Sevilla M, Macia-Agullo JA, Fuertes AB, Biomass Bioenerg., 35(7), 3152 (2011)
Demirbas A, Energy Conv. Manag., 49(8), 2106 (2008)
Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J, ACS Sustain. Chem. Eng., 1, 1092 (2013)
Fuertes A, Arbestain MC, Sevilla M, Macia-Agullo J, Fiol S, Lopez R, Smernik RJ, Aitkenhead W, Arce F, Macias F, Soil. Res., 48, 618 (2010)
Liu ZG, Quek A, Hoekman SK, Balasubramanian R, Fuel, 103, 943 (2013)
Parshetti GK, Chowdhury S, Balasubramanian R, Bioresour. Technol., 161, 310 (2014)
Parshetti GK, Hoekman SK, Balasubramanian R, Bioresour. Technol., 135, 683 (2012)
Everard CD, Fagan CC, O'Donnell CP, O'Callaghan DJ, Lyng JG, J. Food Eng., 75(3), 415 (2006)
Wang YF, Wig TD, Tang JM, Hallberg LM, J. Food Eng., 57(3), 257 (2003)
Pala M, Kantarli IC, Buyukisik HB, Yanik J, Bioresour. Technol., 161, 255 (2014)
Arami-Niya A, Abnisa F, Shafeeyan MS, Daud W, Sahu JN, BioResources., 7, 0246 (2012)
Marx S, Chiyanzu I, Piyo N, Bioresour. Technol., 164, 177 (2014)
Chadwick DT, McDonnell KP, Brennan LP, Fagan CC, Everard CD, Renew. Sust. Energ. Rev., 30, 672 (2014)
Park J, Won SW, Mao J, Kwak IS, Yun YS, J. Hazard. Mater., 181(1-3), 794 (2010)
Zhang TY, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC, Chem. Eng. J., 105(1-2), 53 (2004)
Daud WMAW, Ali WSW, Sulaiman MZ, Carbon, 38, 1925 (2000)
Kirtania K, Joshua J, Kassim MA, Bhattacharya S, Fuel Process. Technol., 117, 44 (2014)
Lua AC, Yang T, J. Colloid Interface Sci., 276(2), 364 (2004)
Rashid K, Reddy KSK, Al Shoaibi A, Srinivasakannan C, Can. J. Chem. Eng., 92(3), 426 (2014)
Li W, Yang K, Peng J, Zhang L, Guo S, Xia H, Ind. Crop. Prod., 28, 190 (2008)
Sevilla M, Fuertes A, Mokaya R, Energy Environ. Sci., 4, 1400 (2011)
Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ, Bioresour. Technol., 101(12), 4584 (2010)
Lapuerta M, Hernandez JJ, Rodriguez J, Biomass Bioenerg., 27(4), 385 (2004)
Sanchez-Silva L, Lopez-Gonzalez D, Villasenor J, Sanchez P, Valverde JL, Bioresour. Technol., 109, 163 (2012)
Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
Mohammed MAA, Salmiaton A, Azlina WAKGW, Amran MSM, Bioresour. Technol., 110, 628 (2012)
El-Sayed SA, Mostafa ME, Energy Conv. Manag., 85, 165 (2014)
Asadieraghi M, Daud WMAW, Energy Conv. Manag., 82, 71 (2014)
Liu ZG, Quek A, Balasubramanian R, Appl. Energy, 113, 1315 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로