ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 2, 2014
Accepted December 1, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery

Department of Chemical & Biological Engineering, Korea University, 1 5-Ga, Anam-dong, Sungbuk-gu, Seoul 136-713, Korea
kimsh@korea.ac.kr
Korean Journal of Chemical Engineering, August 2015, 32(8), 1554-1563(10), 10.1007/s11814-014-0358-y
downloadDownload PDF

Abstract

Organic-inorganic composite membranes were prepared with sulfonated poly(ether ether ketone) (SPEEK) and different amounts of silica to improve chemical stability and vanadium hindrance for a vanadium redox flow battery. The durability of the prepared composite membrane was verified using a self-made dummy cell system and fully charged vanadium cathode half-cell electrolyte, which contained oxidative vanadium ions (VO2 +). The prepared composite membranes, with covalent crosslinking between the organic polymer and inorganic particles, resulted in reduced vanadium permeability and enhanced chemical stability. Ion exchange capacity, water uptake, proton conductivity, and vanadium permeability decreased with increasing silica content. Selectivity was defined to consider both permeability and proton conductivity and resulted in a membrane that exhibited both high proton conductivity and low ion permeability simultaneously. The prepared 1 wt% silica composite membrane showed 133-fold higher selectivity compared with that of a Nafion112 membrane. After the stability test, the composite membrane showed little change compared to the membrane before the stability test, which confirmed the commercial prospect of SPEEK/SiO2 composite membrane for a vanadium redox flow battery.

References

Mohammadi T, Skyllaskazacos M, J. Membr. Sci., 107(1-2), 35 (1995)
Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55 (1997)
Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
Jia CK, Liu JG, Yan CW, J. Power Sources, 195(13), 4380 (2010)
Lue SJ, Shih TS, Wei TC, Korean J. Chem. Eng., 23(3), 441 (2006)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)
Hwang GJ, Ohya H, J. Membr. Sci., 120(1), 55 (1996)
Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
Mohammadi T, Skyllas-Kazacos M, J. Power Sources, 63, 179 (1996)
Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 166(2), 531 (2007)
Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Power Sources, 189(2), 1240 (2009)
Sang SB, Wu QM, Huang KL, J. Membr. Sci., 305(1-2), 118 (2007)
Zeng Z, Jiang CP, Electrochem. Commun., 10, 372 (2008)
Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
Fabbri P, Messori M, Montecchi M, Pilati F, Taurino R, Tonelli C, Toselli M, J. Appl. Polym. Sci., 102(2), 1483 (2006)
Qi CZ, Gao H, Yan FY, Liu WM, Bao GQ, Sun XD, Chen JM, Zheng XM, J. Appl. Polym. Sci., 97(1), 38 (2005)
Wang N, Peng S, Electrochem. Commun., 17, 30 (2012)
Silva VS, Ruffmann B, Silva H, Gallego YA, Mendes A, Madeira LM, Nunes SP, J. Power Sources, 140(1), 34 (2005)
Luo QT, Zhang HM, Chen J, You DJ, Sun CX, Zhang Y, J. Membr. Sci., 325(2), 553 (2008)
Sukkar T, Skyllas-Kazacos M, J. Appl. Electrochem., 34(2), 137 (2004)
Li XF, Zhang G, Xu D, Zhao CJ, Na H, J. Power Sources, 165(2), 701 (2007)
Chen DY, Wang SJ, Xiao M, Han DM, Meng YZ, J. Power Sources, 195(22), 7701 (2010)
Luo YT, Guo JC, Wang CS, Chu D, J. Power Sources, 195(12), 3765 (2010)
Kreuer KD, J. Membr. Sci., 185(1), 29 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로