ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 20, 2014
Accepted January 29, 2015
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts

Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, South Dakota 57007, USA
lin.wei@sdstate.edu
Korean Journal of Chemical Engineering, August 2015, 32(8), 1528-1541(14), 10.1007/s11814-015-0028-8
downloadDownload PDF

Abstract

Catalytic cracking of camelina oils to hydrocarbon fuels over ZSM-5 and ZSM-5 impregnated with Zn2+(named bifunctional catalyst) was individually carried out at 500 oC using a tubular fixed-bed reactor. Fresh and used catalysts were characterized by ammonia temperature-programmed desorption (NH3-TPD), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and nitrogen isothermal adsorption/desorption micropore analyzer. The effect of catalysts on the yield rate and qualities of products was discussed. The loading of Zn2+ to ZSM-5 provided additional acid sites and increased the ratio of Lewis acid site to Brønsted acid site. BET results revealed that the surface area and pore volume of the catalyst decreased after ZSM-5 was impregnated with zinc, while the pore size increased. When using the bifunctional catalyst, the pH value and heating value of upgraded camelina oils increased, while the oxygen content and moisture content decreased. Additionally, the yield rate of hydrocarbon fuels increased, while the density and oxygen content decreased. Because of a high content of fatty acids, the distillation residues of cracking oils might be recycled to the process to improve the hydrocarbon fuel yield rate.

References

Maher KD, Bressler DC, Bioresour. Technol., 98(12), 2351 (2007)
Demirbas A, Kara H, Energy Sources Part A-Recovery Util. Environ. Eff., 28(7), 619 (2006)
Rao TM, Clavero MM, Makkee M, ChemSusChem., 3, 807 (2010)
Chiappero M, Do PTM, Crossley S, Lobban LL, Resasco DE, Fuel, 90(3), 1155 (2011)
Nawaz Z, Xiaoping T, Fei W, Korean J. Chem. Eng., 26(6), 1528 (2009)
Wang HL, Yan SL, Salley SO, Ng KYS, Ind. Eng. Chem. Res., 51(30), 10066 (2012)
Xu JM, Jiang JC, Sun YJ, Chen J, Bioresour. Technol., 101(24), 9803 (2010)
Zhang H, Cheng Y, Vispute TP, Xiao R, Huber GW, Energy Environ. Sci., 4, 2297 (2011)
Penzien J, Abraham A, Bokhoven JA, Jentys A, Muller TE, Sievers C, Lercher JA, J. Phys. Chem., 108, 4116 (2004)
Demirbas A, Energy Sources, 25(5), 457 (2003)
Zakaria ZY, Linnekoski J, Amin NA, Chem. Eng., 207-208, 803 (2012)
Sharma RK, Anand M, Rana BS, Kumar R, Farooqui SA, Sibi MG, Sinha AK, Catal. Today, 198(1), 314 (2012)
Li H, Shen BX, Kabalu JC, Nchare M, Renew. Energy, 34(4), 1033 (2009)
Boateng AA, Mullen CA, Goldberg NM, Energy Fuels, 24, 6624 (2010)
Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H, Renew. Sust. Energ. Rev., 18, 211 (2013)
Zhao X, Wei L, Julson J, Huang Y, J. Sustainable Bioenergy Systems, 4, 199 (2014)
Carlson TR, Jae J, Lin Y, Tompsett GA, Huber GW, J. Catal., 2, 110 (2010)
Zhao X, Wei L, Julson J, Qiao Q, Dubey A, Anderson G, N. Biotechnol., 32, 300 (2015)
Ren XT, Li N, Cao JQ, Wang ZY, Liu SY, Xiang SH, Appl. Catal. A: Gen., 298, 144 (2006)
Weingarten R, Tompsett GA, Conner WC, Huber GW, J. Catal., 279(1), 174 (2011)
Zheng AQ, Zhao ZL, Chang S, Huang Z, Wu HX, Wang XB, He F, Li HB, J. Mol. Catal. A-Chem., 383, 23 (2014)
Jin H, Wang X, Gu Z, Hoefelmeyer JD, Muthukumarappan K, Julson J, RSC Adv., 4, 14136 (2014)
Zhao X, Wei L, Julson J, AIMS Energy, 2, 193 (2014)
Huang Y, Wei L, Julson J, Gao Y, Zhao X, J. Anal. Appl. Pyrolysis, 111, 148 (2015)
Bezergianni S, Voutetakis S, Kalogianni A, Ind. Eng. Chem. Res., 48(18), 8402 (2009)
Trimm DL, Appl. Catal. A: Gen., 212(1-2), 153 (2001)
Kouva S, Kanervo J, Schussler F, Olindo R, Lercher JA, Krause O, Chem. Eng. Sci., 89, 40 (2013)
Camiloti AM, Jahn SL, Velasco ND, Moura LF, Cardoso D, Appl. Catal. A: Gen., 182(1), 107 (1999)
Bagnasco G, J. Catal., 159(1), 249 (1996)
Lonyi F, Valyon J, Thermochim. Acta, 373(1), 53 (2001)
Kumar N, Lindfors LE, Byggningsbacka R, Appl. Catal. A: Gen., 139(1-2), 189 (1996)
Al-Khattaf S, Appl. Catal. A: Gen., 231(1-2), 293 (2002)
Sharma YC, Singh B, Korstad J, Energy Fuels, 24, 3223 (2010)
Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW, J. Catal., 279(2), 257 (2011)
Jiang Y, Juan J, Meng X, Cao W, Yarmo MA, Zhang J, Chem. Res. Chinese U., 23, 349 (2007)
Khatamian M, Irani M, J. Iran. Chem. Soc., 6, 187 (2009)
Yaliwal VS, Daboji SR, Banapurmath NR, Tewari PG, Int. J. Eng. Sci. Technol., 2, 5938 (2010)
Santillan-Jimenez E, Morgan T, Lacny J, Mohapatra S, Crocker M, Fuel, 103, 1010 (2013)
Rustan AC, Drevon CA, Encyclopedia of Life Sciences, 1 (2005)
Noureddini H, Teoh BC, Clements LD, J. Am. Oil Chem. Soc., 69, 1189 (1992)
Zhang HY, Xiao R, Huang H, Xiao G, Bioresour. Technol., 100(3), 1428 (2009)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로