ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 17, 2014
Accepted July 1, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Analysis of the dynamics of a packed column using semi-empirical models: Case studies with the removal of hexavalent chromium from effluent wastewater

Department of Chemical Engineering, Jadavpur University, Kolkata-700032, West Bengal, India
usarkar@chemical.jdvu.ac.in, abhi_nandan47@rediffmail.com
Korean Journal of Chemical Engineering, January 2015, 32(1), 20-29(10), 10.1007/s11814-014-0183-3
downloadDownload PDF

Abstract

The dynamics of a packed bed, used for handling enormous quantities of effluent wastewater from industrial discharge, is a very important issue from a design point of view. Semi empirical Thomas and BDST Models are applied to analyze the dynamic behavior of packed beds filled in with GAC and PAC. Variations in breakthroughs with respect to exhaustion time, various bed depths, flow rates and influent solute concentrations are studied. The linearized BDST model gives very high values of R2=0.9959 (for 20% breakthrough) and R2=0.9578 (for 85% breakthrough), indicating the validity of the model for the present column system for both 20 and 85% of breakthroughs. For breakthroughs, below the 50% saturation, the BDST model is used to estimate the design of columns with various scale-ups of the process for other flow rates and initial adsorbate concentrations without any additional experiments. BDST coefficients of lower breakthroughs, below 50%, can also be used for evaluating other parameters such as critical bed depth, adsorption capacity and rate constant. The values of BDST constants, N0 and K, are not affected by changing flow rates for a particular adsorbent combination and changing influent concentrations. The validity of the Thomas model is ensured by the high R2 values, ranging from 0.855 to 0.925, while estimating the Thomas kTh and q0.

References

Rojas G, Silva J, Flores JA, Rodriguez A, Ly M, Maldonado H, Sep. Purif. Technol., 44(1), 31 (2005)
Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC, Chem. Eng. J., 150(1), 25 (2009)
Kalidhasan S, Ganesh M, Sricharan S, Rajesh N, J. Hazard. Mater., 165(1-3), 886 (2009)
Costa M, Toxcol. Appl. Pharm., 188, 1 (2003)
Baral SS, Das SN, Rath P, Chaudhury R, Biochem. Eng. J., 34, 69 (2007)
Srivastava S, Ahmad AH, Thakur IS, Bioresour. Technol., 98(5), 1128 (2007)
Dupont L, Guillon E, Environ. Sci. Technol., 37, 4235 (2003)
Fendorf S, Wielinga BW, Hansel CM, Int. Geol. Rev., 42, 691 (2000)
Han X, Wong YS, Wong MH, Tam NFY, J. Hazard. Mater., 146(1-2), 65 (2007)
Ouki SK, Neufeld RD, J. Chem. Technol. Biotechnol., 70(1), 3 (1997)
Altundogan HS, Process. Biochem., 40, 1443 (2005)
Zhou X, Korenaga T, Takahashi T, Moriwake T, Shinoda S, Water Res., 27, 1049 (1993)
Shaalan H, Sorour M, Tewfik S, Desalination, 14, 315 (2001)
Rengaraj S, Joo CK, Kim Y, Yi J, J. Hazard. Mater., 102(2-3), 257 (2003)
Fadali OA, Magdy YH, Daifullah AAM, Ebrahiem EE, J. Environ. Sci. Health Part A, Toxic/ Hazard Subst. Environ. Eng., 39, 465 (2004)
Rajesh N, Jalan RK, Hotwany P, J. Hazard. Mater., 150, 723 (2008)
Zhao NQ, Wei N, Li JJ, Qiao ZJ, Cui J, He F, Chem. Eng. J., 115(1-2), 133 (2005)
El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A, J. Hazard. Mater., 152(1), 263 (2008)
Duranoglu D, Trochimczuk AW, Beker U, Chem. Eng. J., 187, 193 (2012)
Malkoc E, Nuhoglu Y, Chem. Eng. Sci., 61(13), 4363 (2006)
Weber TW, Chakravorti RK, AIChE J., 20, 228 (1974)
Sharma DC, Forster CF, Process Biochem., 31(3), 213 (1996)
Sarin V, Singh TS, Pant KK, Bioresour. Technol., 97(16), 1986 (2006)
Boharts G, Adam EN, J. Am. Chem. Soc., 42, 523 (1920)
McKay G, Bino MJ, Water Environ. Pollut., 66, 33 (1990)
MURALEEDHARAN TR, PHILIP L, IYENGAR L, VENKOBACHAR C, Bioresour. Technol., 49(2), 179 (1994)
Lehman M, Zouboulis AI, Matis KA, Environ. Pollut., 113, 121 (2001)
Kratochvil D, Volesky B, Water Res., 34, 3186 (2000)
Vijayaraghavan K, Prabu D, J. Hazard. Mater., 137(1), 558 (2006)
Ayoob S, Gupta AK, Bhakat PB, Sep. Purif. Technol., 52(3), 430 (2007)
Zulfadhly Z, Mashitan MD, Bhatia S, Environ. Pollut., 112, 463 (2001)
Ko DCK, Porter JF, McKay G, Chem. Eng. Sci., 55(23), 5819 (2000)
Hutchins R, J. Chem. En. Lond., 81, 133 (1973)
Kobya M, Bioresour. Technol., 91(3), 317 (2004)
Sankararamakrishnan N, Kumar P, Chauhan VS, Sep. Purif. Technol., 63(1), 213 (2008)
Vijayaraghavan K, Jegan J, Palanivelu K, Velan M, Chem. Eng. J., 106(2), 177 (2005)
Netpradith S, Thiravetyan P, Towprayoon S, Water Res., 38, 71 (2004)
Othman MZ, Roddick FA, Snow R, Water Res., 35, 2943 (2001)
Goel J, Kadirvelu K, Rajagopal C, Garg VK, J. Hazard. Mater., 125(1-3), 211 (2005)
Kumar PA, Chakraborty S, J. Hazard. Mater., 162(2-3), 1086 (2009)
Thomas HC, J. Am. Chem. Soc., 66, 1466 (1944)
Aksu Z, Cagatay SS, Sep. Purif. Technol., 48(1), 24 (2006)
Han R, Wang Y, Yu W, Zou W, Shi J, Lui H, J. Hazard. Mater., 139, 513 (2006)
Unuabonah EI, Olu-Owolabi BI, Fasuyi EI, Adebowale KO, J. Hazard. Mater., 179(1-3), 415 (2010)
Suksabye P, Thiravetyan P, Nakbanpote W, J. Hazard. Mater., 160(1), 56 (2008)
Aksu Z, Gonen F, Process. Biochem., 39, 599 (2004)
Fu Y, Viraraghavan T, Water SA, 29, 465 (2003)
Malkoc E, Nuhoglu Y, Abali Y, Chem. Eng. J., 119(1), 61 (2006)
Rao JR, Viraraghavan T, Bioresour. Technol., 85(2), 165 (2002)
Easton AD, Clesceri LS, Greenberg AE, Standard methods for the examination of water and wastewater, Standard Methods, (APHA, AWWA, WEF) 17th Ed. (1989)
Huang MC, Chou CH, Teng HS, AIChE J., 48(8), 1804 (2002)
Aksu Z, Cagatay SS, Gonen F, J. Hazard. Mater., 143(1-2), 362 (2007)
Singha S, Sarkar U, Mondal S, Saha S, Desalination, 297, 48 (2012)
Saha S, Sarkar U, Mondal S, Desali. Water Treat., 37, 277 (2012)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로