ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 4, 2014
Accepted April 3, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology

Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj 66177, Iran 1Department of Mechanical Engineering, Faculty of Engineering, Razi University, Kermanshah 67149, Iran
Korean Journal of Chemical Engineering, September 2014, 31(9), 1695-1706(12), 10.1007/s11814-014-0099-y
downloadDownload PDF

Abstract

We studied the capability of electrocentrifuge-spinning (ECS) method for generating highly aligned nanofiber. First, the degree of nanofiber alignment (DNA) produced by ECS was compared with that of rotating drum (RD) method and ECS superiority was demonstrated. Then central composite design (CCD) and response surface methodology (RSM) was used for optimization of operating conditions. The critical factors selected for the examination were_x000D_ voltage, polymer concentration, collector diameter and spinneret rotational speed. To design the required experiments at the settings of independent parameters, RSM was applied. A total of 30 experiments were accomplished towards the construction of a quadratic model for target variable. Using this quadratic model, the influence of aforementioned variables was discussed on DNA. The best operating condition for attaining the maximum value of DNA was the applied_x000D_ voltage of 20.19 kV, polymer concentration of 17.44wt%, collector diameter of 40.76 cm, and rotational speed of 2680.10 rpm.

References

Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos. Sci. Technol., 63, 2223 (2003)
Bhardwaj N, Kundu SC, Biotechnol. Adv., 28, 325 (2010)
Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 28(1), 114 (2011)
Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 25(4), 923 (2008)
Kanafchian M, Valizadeh M, Haghi AK, Korean J. Chem. Eng., 28(2), 428 (2011)
Reneker DH, Yarin AL, Fong H, Koombhongse S, J. Appl. Phys., 87, 4531 (2000)
Yarin AL, Koombhongse S, Reneker DH, J. Appl. Phys., 89, 3018 (2001)
Wu H, Lin D, Zhang R, Pan W, J. Am. Ceram. Soc., 91(2), 656 (2008)
Pan CF, Wu H, Wang C, Wang B, Zhang L, Cheng ZD, Hu P, Pan W, Zhou ZY, Yang X, Zhu J, Adv. Mater., 20(9), 1644 (2008)
Lu X, Zhang W, Wang C, Wen TC, Wei Y, Prog. Polym. Sci., 36, 671 (2011)
Chew SY, Mi R, Hoke A, Leong KW, Biomaterials, 29, 653 (2008)
Lim SH, Liu XY, Song H, Yarema KJ, Mao HQ, Biomaterials, 28, 1967 (2007)
Jha BS, Colello RJ, Bowman JR, Sell SA, Lee KD, Bigbee JW, Bowlin GL, Chow WN, Mathern BE, Simpson DG, Acta Biomater., 7, 203 (2011)
Xu CY, Inai R, Kotaki M, Ramakrishna S, Biomaterials, 25, 877 (2004)
Gu SY, Wu QL, Ren J, Vancso GJ, Macromol. Rapid Commun., 26(9), 716 (2005)
Wang XF, Zhang K, Zhu MF, Hsiao BJS, Chu BJ, Macromol. Rapid Commun., 29(10), 826 (2008)
Mathew G, Hong JP, Rhee JM, Leo DJ, Nah C, J. Appl. Polym. Sci., 101(3), 2017 (2006)
Matthews JA, Wnek GE, Simpson DG, Bowlin GL, Biomacromolecules, 3(2), 232 (2002)
Boland ED, Wnek GE, Simpson DG, Palowski KJ, Bowlin GL, J. Macromol. Sci., Pure Appl. Chem. A, 38, 1231 (2001)
Theron A, Zussman E, Yarin AL, Nanotechnology, 12, 384 (2001)
Li D, Wang Y, Xia Y, Nano Lett., 3, 1167 (2003)
Jalili R, Morshed M, Abdolkarim S, Ravandi H, J. Appl. Polym. Sci., 101(6), 4350 (2006)
Jalili R, Hosseini-Ravandi SA, Morshed M, Iranian J. Polym. Sci. Technol., 4, 241 (2006)
Afifi AM, Nakajima H, Yamane H, Kimura Y, Nakano S, Macromol. Mater. Eng., 294, 658 (2009)
Bazbouz MB, Stylios GK, J. Appl. Polym. Sci., 107(5), 3023 (2008)
Carnell LS, Siochi EJ, Holloway NM, Stephens RM, Rhim C, Niklason LE, Clark RL, Macromolecules, 41(14), 5345 (2008)
Dabirian F, Ravandi SAH, Pishevar AR, Curr. Nanosci., 6, 545 (2010)
Dabirian F, Ravandi SAH, Pishevar AR, Abuzade RA, J. Electrostat., 69, 540 (2011)
Kwak J, Int. J. Mach. Tool Manuf., 45, 327 (2005)
Kim D, Song Y, Park Y, Korean J. Chem. Eng., 30(3), 664 (2013)
Ziabari M, Mottaghitalab V, Haghi AK, Korean J. Chem. Eng., 27(1), 340 (2010)
Rahmanian B, Pakizeh M, Maskooki A, Korean J. Chem. Eng., 29(6), 804 (2012)
Kincl M, Turk S, Vrecer F, Int. J. Pharm., 291, 39 (2005)
Gunaraj V, Murugan N, J. Mater. Process. Technol., 88, 266 (1999)
Hosseini Ravandi SA, Toriumi K, Text. Res. J., 65, 676 (1995)
Montgomery DC, Design and analysis of experiments, 6th Ed., Wiley, Singapore (2001)
Box GEP, Hunter JS, Ann. Math. Stat., 28, 195 (1957)
Obeng D, Morrell S, Napier T, Int. J. Miner. Process., 769, 181 (2005)
Zhang C, Yuan X, Wu L, Han Y, Sheng J, Eur. Polym. J., 41, 423 (2005)
Demir MM, Yilgor I, Yilgor E, Erman B, Polymer, 43(11), 3303 (2002)
Reneker D, Chun L, Nanotechnology, 7, 216 (1996)
Haghi A, Akbari M, Phys. Status. Solidi., 204, 1830 (2007)
Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH, Polymer, 46(14), 5094 (2005)
Deitzel JM, Kleinmeyer J, Harris D, Tan NCB, Polymer, 42(1), 261 (2001)
Liu HQ, Hsieh YL, J. Polym. Sci. B: Polym. Phys., 40(18), 2119 (2002)
McKee MG, Wilkes GL, Colby RH, Long TE, Macromolecules, 37(5), 1760 (2004)
Ryu Y, Kim H, Lee K, Park H, Lee D, Eur. Polym. J., 39, 1883 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로