ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 7, 2013
Accepted December 1, 2013
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route

1Bioresources Engineering Department, CSIR - Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar-751013, India 2North Orissa University (NOU), Baripada-757003, Orissa, India 3Academy of Scientific and Innovation, Research, CSIR - Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar-751013, India 4Hydro and Electrometallurgy Department, CSIR - Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar-751013, India 5Bioresources Engineering Department, Hydro and Electrometallurgy Department, CSIR - Institute of Minerals & Materials Technology (CSIR-IMMT), Bhubaneswar-751013, India
panda.sandeep84@gmail.com
Korean Journal of Chemical Engineering, March 2014, 31(3), 452-460(9), 10.1007/s11814-013-0261-y
downloadDownload PDF

Abstract

Bioleaching studies for chalcopyrite contained ball mill spillages are very scarce in the literature. We developed a process flow sheet for the recovery of copper metal from surface activated (600 ℃, 15 min) ball mill spillage through bio-hydrometallurgical processing route. Bioleaching of the activated sample using a mixed meso-acidophilic bacterial consortium predominantly A. ferrooxidans strains was found to be effective at a lixiviant flow rate of 1.5 L/h, enabling a maximum 72.36% copper recovery in 20 days. Mineralogical as well as morphological changes_x000D_ over the sample surface were seen to trigger the bioleaching efficiency of meso-acidophiles, thereby contributing towards an enhanced copper recovery from the ball mill spillage. The bio-leach liquor containing 1.84 g/L Cu was purified through solvent extraction using LIX 84I in kerosene prior to the recovery of copper metal by electrowinning. Purity of the copper produced through this process was 99.99%.

References

Wang S, J. Microbiol., 57, 48 (2005)
Olubambi PA, Ndlovu S, Potgieter JH, Borode JO, Hydrometallurgy, 86, 96 (2007)
Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157 (2012)
Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
Renman R, Xingyu L, Gang Z, Jinghe C, Jiankang W, Dianzuo W, Hydrometallurgy, 108, 130 (2011)
Rawlings DE, Johnson BD Eds., Biomining, Springer (2007)
Crundwell FK, Hydrometallurgy, 21, 155 (1988)
Habashi F, McGraw-Hill, New York (1978)
Watling HR, Hydrometallurgy, 84, 81 (2006)
Qiu M, Xiong S, Zhang W, Wang G, Min. Eng., 18, 987 (2005)
Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS, BMC Genomics, 9, 597 (2008)
Baba AA, Adekola FA, Atata RF, Ahmed RN, Panda S, Trans. Nonferrous Met. Soc. China, 21, 2535 (2011)
Acar S, Brierley JA, Wan RY, Hydrometallurgy, 77, 239 (2005)
Bull AT, Korean J. Chem. Eng., 18(2), 137 (2001)
Rao KS, Mishra A, Pradhan D, Chaudhury GR, Mohapatra BK, Das T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(3), 524 (2008)
Sukla LB, Nathsarma KC, Mahanta JR, Singh S, Behera S, Rao KS, Subbaiah T, Mishra BK, Korean J. Chem. Eng., 26(6), 1668 (2009)
Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
Norgate T, Jahanshahi S, Min. Eng., 23, 65 (2010)
Mohapatra S, Sengupta C, Nayak BD, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(5), 1070 (2008)
Panda S, Panda SK, Nayak BD, Rao DS, Pradhan N, Sukla LB, Mishra BK, Proceedings of the XI international seminar on mineral processing technology, NML Jamshedpur, India, 955 (2010)
Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
Modaka JM, Natarajan KA, Mukhopadhyay S, Hydrometallurgy, 42, 51 (1996)
Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
Web reference: http://www.minweb.co.uk/quartz/alphaquartz.html, Accessed on 03.04.2013.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로