Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 15, 2014
Accepted June 2, 2014
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effect of nafion membrane thickness on performance of vanadium redox flow battery
Graduate School of Energy and Environment, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 139-743, Korea 1Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 139-743, Korea 2Department of New Energy and Resource Engineering, Sangji University, Sangjidae-gil, Wonju-si, Gangwon-do 220-702, Korea
Korean Journal of Chemical Engineering, November 2014, 31(11),
10.1007/s11814-014-0157-5
10.1007/s11814-014-0157-5
Abstract
The performance of vanadium redox ow batteries (VRFBs) using different membrane thicknesses was evaluated and compared. The associated experiments were conducted with Nafion® 117 and 212 membranes that have 175 and 50 μm of thickness, respectively. The charge efficiency (CE) and energy efficiency (EE) of VRFB using Nafion® 117 were higher than those of VRFB using Nafion® 212, while power efficiency was vice versa. In terms of amounts of charge and discharge that are measured in different charging current densities, the amounts in VRFB using Nafion® 212 are more than that in VRFB using Nafion® 117. To further characterize the effect of membrane thickness on VRFB performance, electrochemical impedance spectroscopy (EIS) and UV-vis. spectrophotometer (UV-vis) were used. In EIS measurements, VRFB using Nafion® 117 was more stable than that using Nafion® 212, while in UV-vis measurements, vanadium crossover rate of VRFB usingNafion® 212 (0.0125M/hr) was higher than that of VRFB using_x000D_
Nafion® 117 (0.0054 M/hr). These results are attributed to high crossover rate of vanadium ion in VRFB using Nafion® 212. With these results, vanadium crossover plays more dominant role than electrochemical reaction resistance in deciding performance of VRFB in condition of different membranes.
Keywords
References
Landgrebe R, Donley SW, Appl. Energy, 15, 127 (1983)
Skyllas-Kazacos M, Rychcik M, Robins R, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577 (2011)
Sum E, Rychcik M, Skyllas-Kazacos M, J. Power Sources, 16, 85 (1985)
de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC, J. Power Sources, 160(1), 716 (2006)
Huang KL, Li XG, Liu SQ, Tan N, Chen LQ, Renew. Energy, 33(2), 186 (2008)
Thaller LH, NASA TM-X-71540, 168 (1974)
Yamamura T, Shiokawa Y, Yamana H, Moriyama H, Electrochim. Acta, 48(1), 43 (2002)
Fang B, Iwasa S, Wei Y, Arai T, Kumagai M, Electrochim. Acta, 47(24), 3971 (2002)
Butler PC, Eidler PA, Grimes PG, Klassen SE, Miles RC, Zinc/Bromine Batteries, in Handbook of Batteries (Ed.: David Linden, Thomas B. Reddy), McGraw-Hill, Ohio (2001)
Zhou HT, Zhang HM, Zhao P, Yi BL, Electrochim. Acta, 51(28), 6304 (2006)
Wei WP, Zhang HM, Li XF, Mai ZS, Zhang HZ, J. Power Sources, 208, 421 (2012)
Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
Jeong S, Kim S, Kwon Y, Electrochim. Acta, 114, 439 (2013)
Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Int. J. Energy Res., 34, 174 (2010)
Suuar T, Skyllas-Kazacos M, J. Membr. Sci., 222(1-2), 249 (2003)
Vijayakumar M, Bhuvaneswari MS, Nachimuthu P, Schwenzer B, Kim S, Yang ZG, Liu J, Graff GL, Thevuthasan S, Hu JZ, J. Membr. Sci., 366(1-2), 325 (2011)
Chen D, Hickner M, Agar E, Kumbur EC, J. Membr. Sci., 437, 108 (2013)
Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55 (1997)
Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Membr. Sci., 341(1-2), 149 (2009)
Baik SM, Han J, Kim J, Kwon Y, Int. J. Hydrog. Energy, 36(22), 14719 (2011)
Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
Mohammadi T, Skyllas-Kazacos M, J. Power Sources, 63, 179 (1996)
Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
Kang MS, Choi YJ, Moon SH, J. Membr. Sci., 207(2), 157 (2002)
Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
Marcicki J, Conlisk AT, Rizzoni G, J. Power Sources, 251, 157 (2014)
Chen D, Hickner MA, Agar E, Kumbur EC, Electrochem. Commun., 26, 37 (2013)
Baik SM, Kim J, Han J, Kwon Y, Int. J. Hydrog. Energy, 36(19), 12583 (2011)
Choi NH, Kwon SK, Kim H, J. Electrochem. Soc., 160, 973 (2013)
Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)
Skyllas-Kazacos M, Rychcik M, Robins R, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577 (2011)
Sum E, Rychcik M, Skyllas-Kazacos M, J. Power Sources, 16, 85 (1985)
de Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC, J. Power Sources, 160(1), 716 (2006)
Huang KL, Li XG, Liu SQ, Tan N, Chen LQ, Renew. Energy, 33(2), 186 (2008)
Thaller LH, NASA TM-X-71540, 168 (1974)
Yamamura T, Shiokawa Y, Yamana H, Moriyama H, Electrochim. Acta, 48(1), 43 (2002)
Fang B, Iwasa S, Wei Y, Arai T, Kumagai M, Electrochim. Acta, 47(24), 3971 (2002)
Butler PC, Eidler PA, Grimes PG, Klassen SE, Miles RC, Zinc/Bromine Batteries, in Handbook of Batteries (Ed.: David Linden, Thomas B. Reddy), McGraw-Hill, Ohio (2001)
Zhou HT, Zhang HM, Zhao P, Yi BL, Electrochim. Acta, 51(28), 6304 (2006)
Wei WP, Zhang HM, Li XF, Mai ZS, Zhang HZ, J. Power Sources, 208, 421 (2012)
Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA, J. Electrochem. Soc., 133, 1057 (1986)
Jeong S, Kim S, Kwon Y, Electrochim. Acta, 114, 439 (2013)
Skyllas-Kazacos M, Kazacos G, Poon G, Verseema H, Int. J. Energy Res., 34, 174 (2010)
Suuar T, Skyllas-Kazacos M, J. Membr. Sci., 222(1-2), 249 (2003)
Vijayakumar M, Bhuvaneswari MS, Nachimuthu P, Schwenzer B, Kim S, Yang ZG, Liu J, Graff GL, Thevuthasan S, Hu JZ, J. Membr. Sci., 366(1-2), 325 (2011)
Chen D, Hickner M, Agar E, Kumbur EC, J. Membr. Sci., 437, 108 (2013)
Hwang GJ, Ohya H, J. Membr. Sci., 132(1), 55 (1997)
Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Membr. Sci., 341(1-2), 149 (2009)
Baik SM, Han J, Kim J, Kwon Y, Int. J. Hydrog. Energy, 36(22), 14719 (2011)
Luo QT, Zhang HM, Chen J, Qian P, Zhai YF, J. Membr. Sci., 311(1-2), 98 (2008)
Mohammadi T, Skyllas-Kazacos M, J. Power Sources, 63, 179 (1996)
Mohammadi T, Kazacos MS, J. Appl. Electrochem., 27(2), 153 (1997)
Kang MS, Choi YJ, Moon SH, J. Membr. Sci., 207(2), 157 (2002)
Luo XL, Lu ZZ, Xi JY, Wu ZH, Zhu WT, Chen LQ, Qiu XP, J. Phys. Chem. B, 109(43), 20310 (2005)
Marcicki J, Conlisk AT, Rizzoni G, J. Power Sources, 251, 157 (2014)
Chen D, Hickner MA, Agar E, Kumbur EC, Electrochem. Commun., 26, 37 (2013)
Baik SM, Kim J, Han J, Kwon Y, Int. J. Hydrog. Energy, 36(19), 12583 (2011)
Choi NH, Kwon SK, Kim H, J. Electrochem. Soc., 160, 973 (2013)
Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)

