Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 28, 2014
Accepted June 19, 2014
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Gas separation properties of polyvinylchloride (PVC)-silica nanocomposite membrane
Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran 1Chemical Engineering Department, Isfahan University of Technology, Isfahan 84156-8311, Iran
m-sadeghi@cc.iut.ac.ir
Korean Journal of Chemical Engineering, November 2014, 31(11), 2041-2050(10)
https://doi.org/10.1007/s11814-014-0169-1
https://doi.org/10.1007/s11814-014-0169-1
Abstract
Researchers have focused on improving the performance of polymeric membranes through various methods, such as adding inorganic nanoparticles into the matrix of the membranes. In the present study, the separation of oxygen, nitrogen, methane and carbon dioxide gases by PVC/silica nanocomposite membranes was investigated. Silica nanoparticles were prepared via sol-gel method. Membranes were prepared by thermal phase inversion method and characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermal gravimetry (TGA) analyses. The FTIR and SEM analyses demonstrated a nano-scale dispersion and good distribution of silica particles in the polymer matrix. According to TGA results, thermal properties_x000D_
of PVC membranes were improved and DSC analysis showed that glass transition temperature of nanocomposite membranes increased by adding silica particles. We concluded that the permeability of carbon dioxide and oxygen increased significantly (about two times) in the composite PVC/silica membrane (containing 30 wt% silica particles), while that of nitrogen and methane increased only 40 to 60 percent. Introducing 30 wt% silica nanoparticles into the PVC matrix, increased the selectivity of CO2/CH4 and CO2/N2 from 15.9 and 21 to 18.2 and 27.3, respectively. The diffusion and solubility coefficients were determined by the time lag method. Increasing the silica mass fraction in the membrane increased the diffusion coefficients of gases considered in the current study.
References
Javaid A, Chem. Eng. J., 112(1-3), 219 (2005)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Bierbrauer K, Lopez-Gonzalez M, Riande E, Mijangos C, J. Membr. Sci., 362(1-2), 164 (2010)
Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H, Polymer, 42(11), 4817 (2001)
Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H, Macromolecules, 35(2), 420 (2002)
Tiemblo P, Guzman J, Riande E, Mijangos C, Herrero M, Espeso J, Reinecke H, J. Polym. Sci. B: Polym. Phys., 40(10), 964 (2002)
Sadeghi M, Chenar MP, Rahimian M, Moradi S, Dehaghani AHS, J. Appl. Polym. Sci., 110(2), 1093 (2008)
Jones CA, Gordeyev SA, Shilton SJ, Polymer, 52(4), 901 (2011)
Jomekian A, Mansoori SAA, Monirimanesh N, Shafiee A, Korean J. Chem. Eng., 28(10), 2069 (2011)
Khan AL, Klaysom C, Gahlaut A, Khan AU, Vankelecom IFJ, J. Membr. Sci., 447, 73 (2013)
Cong HL, Radosz M, Towler BF, Shen YQ, Sep. Purif. Technol., 55(3), 281 (2007)
Kong Y, Du HW, Yang JR, Shi DQ, Wang YF, Zhang YY, Xin W, Desalination, 146(1-3), 49 (2002)
Hosseini SS, Li Y, Chung TS, Liu Y, J. Membr. Sci., 302(1-2), 207 (2007)
Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S, J. Membr. Sci., 322(2), 423 (2008)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP, J. Membr. Sci., 376(1-2), 188 (2011)
Pye DG, Hoehn HH, Panar M, J. Appl. Polym. Sci., 20, 1921 (1976)
Naghsh M, Sadeghi M, Moheb A, Chenar MP, Mohagheghian M, J. Membr. Sci., 423, 97 (2012)
Park SM, Choi YW, Yang TH, Park JS, Kim SH, Korean J. Chem. Eng., 30(1), 87 (2013)
O’Brien KC, Koros WJ, Barbari TA, Sanders ES, J. Membr. Sci., 29, 229 (1986)
Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 311 (2003)
Talakesh MM, Sadeghi M, Chenar MP, Khosravi A, J. Membr. Sci., 415, 469 (2012)
Kucukpinar E, Doruker P, Polymer, 44(12), 3607 (2003)
Hu N, Fried JR, Polymer, 46(12), 4330 (2005)
Economou IG, Raptis VE, Melissas VS, Theodorou DN, Petrou J, Petropoulos JH, Fluid Phase Equilib., 228, 15 (2005)
Farno E, Ghadimi A, Kasiri N, Mohammadi T, Sep. Purif. Technol., 81(3), 400 (2011)
Sadeghi M, Talakesh MM, Ghalei B, Shafiei M, J. Membr. Sci., 427, 21 (2013)
Ge L, Zhu ZH, Rudolph V, Sep. Purif. Technol., 78(1), 76 (2011)
Pakizeh M, Moghadam AN, Omidkhah MR, Namvar-Mahboub M, Korean J. Chem. Eng., 30(3), 751 (2013)
Albo J, Hagiwara H, Yanagishita H, Ito K, Tsuru T, Ind. Eng. Chem. Res., 53(4), 1442 (2014)
Robeson LM, J. Membr. Sci., 320, 340 (2008)
Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)
Bierbrauer K, Lopez-Gonzalez M, Riande E, Mijangos C, J. Membr. Sci., 362(1-2), 164 (2010)
Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H, Polymer, 42(11), 4817 (2001)
Tiemblo P, Guzman J, Riande E, Mijangos C, Reinecke H, Macromolecules, 35(2), 420 (2002)
Tiemblo P, Guzman J, Riande E, Mijangos C, Herrero M, Espeso J, Reinecke H, J. Polym. Sci. B: Polym. Phys., 40(10), 964 (2002)
Sadeghi M, Chenar MP, Rahimian M, Moradi S, Dehaghani AHS, J. Appl. Polym. Sci., 110(2), 1093 (2008)
Jones CA, Gordeyev SA, Shilton SJ, Polymer, 52(4), 901 (2011)
Jomekian A, Mansoori SAA, Monirimanesh N, Shafiee A, Korean J. Chem. Eng., 28(10), 2069 (2011)
Khan AL, Klaysom C, Gahlaut A, Khan AU, Vankelecom IFJ, J. Membr. Sci., 447, 73 (2013)
Cong HL, Radosz M, Towler BF, Shen YQ, Sep. Purif. Technol., 55(3), 281 (2007)
Kong Y, Du HW, Yang JR, Shi DQ, Wang YF, Zhang YY, Xin W, Desalination, 146(1-3), 49 (2002)
Hosseini SS, Li Y, Chung TS, Liu Y, J. Membr. Sci., 302(1-2), 207 (2007)
Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S, J. Membr. Sci., 322(2), 423 (2008)
Ahn JY, Chung WJ, Pinnau I, Guiver MD, J. Membr. Sci., 314(1-2), 123 (2008)
Sadeghi M, Semsarzadeh MA, Barikani M, Chenar MP, J. Membr. Sci., 376(1-2), 188 (2011)
Pye DG, Hoehn HH, Panar M, J. Appl. Polym. Sci., 20, 1921 (1976)
Naghsh M, Sadeghi M, Moheb A, Chenar MP, Mohagheghian M, J. Membr. Sci., 423, 97 (2012)
Park SM, Choi YW, Yang TH, Park JS, Kim SH, Korean J. Chem. Eng., 30(1), 87 (2013)
O’Brien KC, Koros WJ, Barbari TA, Sanders ES, J. Membr. Sci., 29, 229 (1986)
Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 311 (2003)
Talakesh MM, Sadeghi M, Chenar MP, Khosravi A, J. Membr. Sci., 415, 469 (2012)
Kucukpinar E, Doruker P, Polymer, 44(12), 3607 (2003)
Hu N, Fried JR, Polymer, 46(12), 4330 (2005)
Economou IG, Raptis VE, Melissas VS, Theodorou DN, Petrou J, Petropoulos JH, Fluid Phase Equilib., 228, 15 (2005)
Farno E, Ghadimi A, Kasiri N, Mohammadi T, Sep. Purif. Technol., 81(3), 400 (2011)
Sadeghi M, Talakesh MM, Ghalei B, Shafiei M, J. Membr. Sci., 427, 21 (2013)
Ge L, Zhu ZH, Rudolph V, Sep. Purif. Technol., 78(1), 76 (2011)
Pakizeh M, Moghadam AN, Omidkhah MR, Namvar-Mahboub M, Korean J. Chem. Eng., 30(3), 751 (2013)
Albo J, Hagiwara H, Yanagishita H, Ito K, Tsuru T, Ind. Eng. Chem. Res., 53(4), 1442 (2014)
Robeson LM, J. Membr. Sci., 320, 340 (2008)

