ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 11, 2014
Accepted April 29, 2014
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

LaMer diagram approach to study the nucleation and growth of Cu2O nanoparticles using supersaturation theory

Materials and Metallurgical Engineering Department, Advanced Materials Research Center, Sahand University of Technology, Tabriz, Iran
Korean Journal of Chemical Engineering, November 2014, 31(11), 2020-2026(7), 10.1007/s11814-014-0130-3
downloadDownload PDF

Abstract

Uptake to cuprous oxide (Cu2O) nanoparticle synthesis with various particle sizes and shapes via supersaturation chemistry approach (LaMer model) has been conducted. Ascorbic acid and maltodextrine as reducing agents and polyvinylpyrrolidone (PVP) as a surfactant were utilized for synthesis of Cu2O nanoparticles in aqueous solution. The narrow particle size range was achieved by controlling the kinetics of nucleation and growth of particles to satisfy LaMer theory. This mean was performed utilizing different reducing agents (ascorbic acid and maltodextrin) and also, changing the reducing agent addition condition. The results showed the reducing agent addition condition, varying the size of Cu2O nanoparticles from 89 nm to 74 nm for drop-wisely and at-once routes, respectively. The samples were characterized by XRD, SEM, and UV-Vis spectroscopy. The results indicate the shape of as-prepared cuprous oxide nanoparticles have close relationship with thermodynamic and kinetic conditions, and also reducing addition condition.

References

El-Sayed MA, Acc. Chem. Res., 37, 326 (2004)
Alivisatos AP, Endeavour, 21, 56 (1997)
Alivisatos AP, Science, 271(5251), 933 (1996)
Yin Y, Alivisatos AP, Nature, 437, 664 (2005)
Murray CB, Sun S, Doyle H, Betley T, Mater. Res. Bull., 26, 985 (2001)
Peng XG, Wickham J, Alivisatos AP, J. Am. Chem. Soc., 120(21), 5343 (1998)
Mahshid S, Askari M, Ghamsari MS, Afshar N, Lahuti S, J. Alloys Compd., 478, 586 (2009)
Finney EE, Finke RG, J. Colloid Interface Sci., 317(2), 351 (2008)
Rioux R (Ed.), Model systems in catalysis: single crystals to supported enzyme mimics, Springer, New York (2010)
Rodriguez JA, Synthesis, Properties and applications of oxide nanomaterials, Wiley-VCH, Weinheim (2007)
Delmon B, Ertl G, Knozinger H, Weitkamp J (Eds.), Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim (1997)
Kung HH, Transition metal oxides: surface chemistry and catalysis, Elsevier, Amsterdam (1989)
Wang XQ, Hanson JC, Frenkel AI, Kim JY, Rodriguez JA, J. Phys. Chem. B, 108(36), 13667 (2004)
Musa AO, Akomolafe T, Carter MJ, Sol. Energy Mater. Sol. Cells, 51(3), 305 (1998)
Zhang JT, Liu JF, Peng Q, Wang X, Li Y, Chem. Mater., 18, 867 (2006)
Zheng Z, Huang B, Wang Z, Guo M, Qin X, Zhang X, J. Phys. Chem., 113, 14448 (2009)
Huang WC, Lyu LM, Yang YC, Huang MH, J. Am. Chem. Soc., 134(2), 1261 (2012)
Poizot P, Laruelle S, Grugeon S, Dupont L, Taracon JM, Nature, 407, 496 (2000)
Lee YJ, Kim S, Park SH, Park H, Huh YD, Mater. Lett., 65, 818 (2011)
Zhang L, Wang H, J. Phys. Chem., 115, 18479 (2011)
Lu CH, Qi LM, Yang JH, Wang XY, Zhang DY, Xie JL, Ma JM, Adv. Mater., 17(21), 2562 (2005)
Kuo CH, Huang MH, J. Am. Chem. Soc., 130(38), 12815 (2008)
Orel ZC, Anzlovar A, Drazi G, Zigon M, Cryst. Growth Des., 7, 453 (2007)
Grez P, Herrera F, Riveros G, Henriquez R, Ramirez A, Munoz E, Mater. Lett., 92, 413 (2013)
Bao H, Zhang W, Shang D, Hua Q, Ma Y, Jiang Z, J. Phys. Chem., 114, 6676 (2010)
Kuo CH, Chen CH, Huang MH, Adv. Funct. Mater., 17(18), 3773 (2007)
Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B, J. Phys. Chem., 115, 15288 (2011)
Zhang Y, Deng B, Zhang T, Gao D, Xu AW, J. Phys. Chem., 114, 5073 (2010)
Zhang ZL, Che HW, Wang YL, Gao JJ, Zhao LR, She XL, Sun J, Gunawan P, Zhong ZY, Su FB, Ind. Eng. Chem. Res., 51(3), 1264 (2012)
Ko E, Choi J, Okamoto K, Tak Y, Lee J, ChemphysChem, 7, 1505 (2006)
Gou L, Murphy CJ, Nano Lett., 3, 231 (2003)
LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
Sugimoto T, J. Colloid Interface Sci., 309(1), 106 (2007)
Sugimoto T, Shiba F, Sekiguchi T, Itoh H, Colloids Surf., A, 164, 183 (2000)
Poot AGV, Gattorno GR, Dominguez OES, Diaz RTP, Pesqueira M, Oskam G, Nanoscale, 2, 2710 (2010)
Ma D, Liu HB, Yang HB, Fu WY, Zhang YY, Yuan MX, Sun P, Zhou XM, Mater. Chem. Phys., 116(2-3), 458 (2009)
Viswanatha R, Sarma DD, Chem. Eur. J., 12, 180 (2006)
Bai YK, Yang TF, Cu Q, Cheng GA, Zheng RT, Powder Technol., 227, 35 (2012)
Wang L, Wei G, Qi B, Zhou HL, Liu ZG, Song YH, Yang XR, Li Z, Appl. Surf. Sci., 252(8), 2711 (2006)
Gao G, Wu H, He R, Cui D, Corros. Sci., 52, 2804 (2010)
Carotenuto G, Denicola S, Nicolais L, J. Nanopart. Res., 3, 469 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로