ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 28, 2012
Accepted December 16, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer using computational fluid dynamics simulation

1Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand 2Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand 3Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, U.S.A., USA
benjapon.c@chula.ac.th
Korean Journal of Chemical Engineering, April 2013, 30(4), 963-975(13), 10.1007/s11814-012-0216-8
downloadDownload PDF

Abstract

The information of particle cluster dynamics is necessary for improving the performance of a circulating fluidized bed system. The main objective of this study is to compare the particle cluster diameters and concentrations from computational fluid dynamics simulation results between circulating fluidized bed riser and downer. The calculation methodologies are based on the concept of kinetic theory of granular flow and statistics. The mathematical model was verified by using the experimental dataset from literature and used for computing the particle cluster dynamics. In the circulating fluidized bed riser and downer, a dense and dilute core-annulus flow structures were obtained, respectively. The particle cluster in the circulating fluidized bed riser possessed more heterogeneity movements than that in the circulating fluidized bed downer. This can be explained by the system flow direction. About the particle cluster dynamics, the particle cluster diameters and concentrations in the circulating fluidized bed riser were higher than the_x000D_ ones in the downer. The calculated values were comparable to the empirical correlations. This confirms the validity of the calculation methodologies. Particle cluster dynamics and its example application inside circulating fluidized bed riser and downer were also discussed.

References

Benyahia S, Arastoopour H, Knowlton TM, Massah H, Powder Technol., 112(1-2), 24 (2000)
Cheng Y, Wu CN, Zhu JX, Wei F, Jin Y, Powder Technol., 183(3), 364 (2008)
Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144 (2010)
Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1212 (2009)
McKeen T, Pugsley T, Powder Technol., 129(1-3), 139 (2003)
Wang JW, Ge W, Li JH, Chem. Eng. Sci., 63(6), 1553 (2008)
Shah MT, Utikar RP, Tade MO, Pareek VK, Evans GM, Chem. Eng. Sci., 66(14), 3291 (2011)
Gidaspow D, Jiradilok V, J. Power Sources, 166(2), 400 (2007)
Levenspiel O, Chemical reaction engineering, John Wiley & Sons, New York (1999)
Breault RW, Powder Technol., 163(1-2), 9 (2006)
Kashyap M, Gidaspow D, Powder Technol., 203(1), 40 (2010)
Chalermsinsuwan B, Piumsomboon P, Gidaspow D, Chem. Eng. Sci., 64(6), 1195 (2009)
Tuzla K, Sharma AK, Chen JC, Schiewe T, Wirth KE, Molerus O, Powder Technol., 100(2-3), 166 (1998)
Helland E, Occelli R, Tadrist L, Int. J. Multiphas. Flow., 28, 199 (2002)
Zhu JX, Yu ZQ, Jin Y, Grace JR, Issangya A, Can. J. Chem. Eng., 73(5), 662 (1995)
Manyele SV, Parssinen JH, Zhu JX, Chem. Eng. J., 88(1-3), 151 (2002)
Breault RW, Ludlow CJ, Yue PC, Powder Technol., 149(2-3), 68 (2005)
Chew JW, Hays R, Findlay JG, Knowlton TM, Karri SBR, Cocco RA, Hrenya CM, Chem. Eng. Sci., 68(1), 72 (2012)
Yerushalmi J, Cankurt NT, Geldart D, Liss B, AIChE Symp.Ser., 74, 1 (1976)
Gidaspow D, Tsuo YP, Luo KM, Computed and experimental cluster formation and velocity profiles in circulating fluidized beds, Fluidization IV, Alberta, Canada (1989)
Horio M, Kuroki H, Chem. Eng. Sci., 49(15), 2413 (1994)
Tartan M, Gidaspow D, AIChE J., 50(8), 1760 (2004)
Jung J, Gidaspow D, Gamwo IK, Ind. Eng. Chem. Res., 44(5), 1329 (2005)
Xu J, Zhu JX, Chem. Eng. J., 168(1), 376 (2011)
Zhang MH, Chu KW, Wei F, Yu AB, Powder Technol., 184(2), 151 (2008)
Soong C, Tuzla K, Chen J, Identification of particle clusters in circulating fluidized bed, Circulating Fluidized Bed Technology Vol. IV, New York, USA (1995)
Sharma AK, Tuzla K, Matsen J, Chen JC, Powder Technol., 111(1-2), 114 (2000)
Gomez LC, da Silva RC, Navarro HA, Milioli FE, Appl.Math. Model., 32, 327 (2007)
Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, Academic Press, Boston (1994)
Breault RW, Powder Technol., 220, 79 (2012)
Guenther C, Breault R, Powder Technol., 173(3), 163 (2007)
Lints M, Glicksman LR, AIChE Symp. Ser., 89, 35 (1993)
Zou B, Li HZ, Xia YS, Ma XH, Powder Technol., 78(2), 173 (1994)
Gu WK, Chen JC, A model for solid concentration in circulating fluidized beds, Fluidization X., Durango, Colorado, USA (1998)
Harris AT, Davidson JF, Thorpe RB, Powder Technol., 127(2), 128 (2002)
Knowlton T, Geldart D, Masten J, King D, Comparison of CFB hydrodynamic models, PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tours, France (1995)
Cao CS, Weinstein H, AIChE J., 46(3), 515 (2000)
Fluent Inc., Fluent 6.2 User’s Guide, Fluent Inc., Lebanon (2005)
Chalermsinsuwan B, Chanchuey T, Buakhao W, Gidaspow D, Piumsomboon P, Chem. Eng. J., 189-190, 313 (2012)
Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787 (1999)
Yang N, Wang W, Ge W, Li JH, Chem. Eng. J., 96(1-3), 71 (2003)
Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 48(1), 165 (2009)
Benyahia S, Arastoopour H, Knowlton TM, Chem. Eng. Commun., 189, 510 (2009)
Johnson PC, Jackson R, J. Fluid Mech., 176, 67 (1987)
Jiradilok V, Gidaspow D, Breault RW, Chem. Eng. Sci., 62(13), 3397 (2007)
Yang WC, Handbook of fluidization and fluid-particle systems, Marcel Dekker, Inc., New York (2003)
Bolkan Y, Berruti F, Zhu J, Milne B, Powder Technol., 132(2-3), 85 (2003)
Zhang MH, Qian Z, Yu H, Wei F, Powder Technol., 129(1-3), 46 (2003)
Zhao YZ, Ding YL, Wu CN, Cheng Y, Powder Technol., 199(1), 2 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로