Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 4, 2012
Accepted November 3, 2012
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Thermal degradation characteristic of Tetra Pak panel boards under inert atmosphere
Department of Chemical Engineering, Yildiz Technical University, 34210 Davutpasa, Istanbul, TURKEY, Turkey 1Department of Forest Biology and Wood Protection Technology, Forestry Faculty, Istanbul University, 34473 Bahcekoy, Istanbul, TURKEY, Turkey 2Department of Forest Products Chemistry and Technology, Forestry Faculty, Istanbul University, 34473 Bahcekoy, Istanbul, TURKEY, Turkey
Korean Journal of Chemical Engineering, April 2013, 30(4),
10.1007/s11814-012-0185-y
10.1007/s11814-012-0185-y
Abstract
Thermal degradation characteristics of Tetra Pak panel boards (TPPB) can be useful to improve usage of such panels as an alternative to wood-based products such as plywood, fiberboard, and particleboard. In the study, samples from the TPBBs manufactured from waste Tetra Pak packages (WTPP) were heated in a nitrogen atmosphere at different heating rates (10, 15 and 20 ℃/min) using a thermal analysis system. The Coats-Redfern kinetic model was applied to calculate kinetic parameters. The degradation rate equations were then established. In addition, the kinetic compensation effect (KCE) was used to correlate the pre-exponential factor (ko) with activation energy (Ea) and the existence of the KCE was accepted. TG-FT/IR analyses were applied to the TPPB degradation and then the FT-IR stack plot was used to analyze gas products (CO2, CH4, HCOOH, and CH3OH). Infrared vibrational frequencies and the micro, crystal structure of the TPPBs were investigated by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM) and X-Ray diffraction analysis (XRD), respectively.
References
Korkmaz A, Yanik J, Brebu M, Vasile C, Pyrolysis of the Tetra Pak, Waste Manage., 29, 11 (2009)
Wu CH, Liu YF, Energy Fuel., 15, 4 (2001)
Boer E, Jedrczak A, Kowalski Z, Kulczycka J, Szpadt R, Waste Manage., 30, 3 (2010)
Wu CH, Chang HS, J. Chem. Technol. Biotechnol., 76 (2001)
Shekdar AV, Waste Manage., 29, 4 (2009)
www.tetrapak.com.
Szente RN, Schroeter MG, Garcia MG, Bender OW, J.Met., 49, 11 (1997)
Lopes CMA, Felisberti MI, J. Appl. Polym. Sci., 101 (2006)
www.alcoa.com.
http://www.ecoallene.com/page.html?id=11.
Coats AW, Redfern JP, Nature., 201 (1964)
Brown ME, Maciejewskib M, Vyazovkinc S, Nomend R, Sempered J, Burnhame A, Opfermannf J, Streyg R, Andersong HL, Eds,, Thermochim. Acta., 355 (2000)
Dantas MB, Almeida AAF, Concei MM, Fernandes VJ, Santos MG, Silva FC, Soledade LEB, Souza AG, J. Therm.Anal. Calorim., 87, 3 (2007)
Dias DS, Crespi MS, Ribeiro CA, Fernandes JLS, Cerqueira HMG, J. Therm. Anal. Calorim., 91, 2 (2008)
Vyazovkina S, Burnhamb AK, Criadoc JM, Perez-Maquedac LA, Popescud C, Sbirrazzuolie N, Thermochim. Acta., 520 (2011)
Souza BS, Moreira AP, Teixeira AM, J. Therm. Anal. Calorim., 97 (2009)
Soares S, Camino G, Levchik S, Polym. Degrad. Stabil., 49, 2 (1995)
Ramiah MV, J. Appl. Polym. Sci., 14 (1970)
Fengel D, Wegener G, Wood-Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin-New York, 319 (1984)
Beall FC, Eickner HW, Madison, Wis., US. Forest Products Laboratory TS801.U493 No.130 (1970)
Brebu M, Vasile C, Cell. Chem. Technol., 44, 9 (2010)
Mansouri NE, Yuan Q, Huang F, Bio. Res., 6, 3 (2011)
Wu CH, Liu YF, Energy Fuel., 15, 4 (2001)
Boer E, Jedrczak A, Kowalski Z, Kulczycka J, Szpadt R, Waste Manage., 30, 3 (2010)
Wu CH, Chang HS, J. Chem. Technol. Biotechnol., 76 (2001)
Shekdar AV, Waste Manage., 29, 4 (2009)
www.tetrapak.com.
Szente RN, Schroeter MG, Garcia MG, Bender OW, J.Met., 49, 11 (1997)
Lopes CMA, Felisberti MI, J. Appl. Polym. Sci., 101 (2006)
www.alcoa.com.
http://www.ecoallene.com/page.html?id=11.
Coats AW, Redfern JP, Nature., 201 (1964)
Brown ME, Maciejewskib M, Vyazovkinc S, Nomend R, Sempered J, Burnhame A, Opfermannf J, Streyg R, Andersong HL, Eds,, Thermochim. Acta., 355 (2000)
Dantas MB, Almeida AAF, Concei MM, Fernandes VJ, Santos MG, Silva FC, Soledade LEB, Souza AG, J. Therm.Anal. Calorim., 87, 3 (2007)
Dias DS, Crespi MS, Ribeiro CA, Fernandes JLS, Cerqueira HMG, J. Therm. Anal. Calorim., 91, 2 (2008)
Vyazovkina S, Burnhamb AK, Criadoc JM, Perez-Maquedac LA, Popescud C, Sbirrazzuolie N, Thermochim. Acta., 520 (2011)
Souza BS, Moreira AP, Teixeira AM, J. Therm. Anal. Calorim., 97 (2009)
Soares S, Camino G, Levchik S, Polym. Degrad. Stabil., 49, 2 (1995)
Ramiah MV, J. Appl. Polym. Sci., 14 (1970)
Fengel D, Wegener G, Wood-Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin-New York, 319 (1984)
Beall FC, Eickner HW, Madison, Wis., US. Forest Products Laboratory TS801.U493 No.130 (1970)
Brebu M, Vasile C, Cell. Chem. Technol., 44, 9 (2010)
Mansouri NE, Yuan Q, Huang F, Bio. Res., 6, 3 (2011)

