Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 4, 2012
Accepted November 16, 2012
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Nonlinear numerical simulation on the onset of Soret-driven motion in a silica nanoparticles suspension
Department of Chemical Engineering, Jeju National University, Jeju 690-756, Korea
mckim@cheju.ac.kr
Korean Journal of Chemical Engineering, April 2013, 30(4), 831-835(5)
https://doi.org/10.1007/s11814-012-0203-0
https://doi.org/10.1007/s11814-012-0203-0
Abstract
The onset of buoyancy-driven convection in an initially quiescent, horizontal silica nanoparticle suspension layer heated from above is analyzed theoretically. In this thermally-stably stratified fluid layer the Soret diffusion can induce buoyancy-driven motion for the case of the negative separation ratio. For the high Rayleigh number the convective motion sets in during the transient diffusion stage and the onset time of this motion is analyzed by employing the nonlinear numerical simulation. It is interesting that the convective motion is very weak and the diffusional process is dominant even after the onset time of convection, τc, and the nonlinear effects are manifested from the time τm(>τc). The present τm explains the existing experimental results quite well.
Keywords
References
Ahlers G, Rehberg I, Phys. Rev. Lett., 56, 1373 (1986)
Moses E, Steinberg V, Phys. Rev. Lett., 57, 2018 (1986)
Liu J, Ahlers G, Phys. Rev. E., 55, 6950 (1997)
La Porta A, Surko CM, Phys. Rev. Lett., 80, 3759 (1998)
Ryskin A, Muller HW, Pleiner H, Phys. Rev. E., 67, 046302 (2003)
Cerbino R, Vailati A, Giglio M, Phys. Rev. E., 055301(R) (2002)
Cerbino R, Vailati A, Giglio M, Philos. Mag., 83, 2023 (2003)
Mazzoni S, Cerbino R, Brogioli D, Vailati A, Giglio M, Eur.Phys. J. E., 15, 305 (2004)
Kim MC, Hong JS, Choi CK, AIChE J., 52(7), 2333 (2006)
Kim MC, Kim LH, Yoon DY, Korean J. Chem. Eng., 26(2), 354 (2009)
Kim MC, Eur. Phys. J. E., 34, 27 (2011)
Hollingert S, Lucke M, Muller HW, Phys. Rev. E., 57, 4250 (1998)
Chen JC, Neitzel GP, Jankowski DF, Phys. Fluids., 28, 749 (1985)
Kim MC, Korean J. Chem. Eng., 29(12), 1688 (2012)
Ferziger JH, Peric M, Computational methods for fluid dynamics, 2nd Ed., Springer (2002)
Patankar SV, Numerical heat transfer and fluid flow, Hemisphere Pub. Co. (1980)
Cerbino R, Vailati A, Giglio M, Phys. Rev. Lett., 94, 064501 (2005)
Giavazzi F, Vailati A, Phys. Rev. E, 015303(R), 80 (2009)
Moses E, Steinberg V, Phys. Rev. Lett., 57, 2018 (1986)
Liu J, Ahlers G, Phys. Rev. E., 55, 6950 (1997)
La Porta A, Surko CM, Phys. Rev. Lett., 80, 3759 (1998)
Ryskin A, Muller HW, Pleiner H, Phys. Rev. E., 67, 046302 (2003)
Cerbino R, Vailati A, Giglio M, Phys. Rev. E., 055301(R) (2002)
Cerbino R, Vailati A, Giglio M, Philos. Mag., 83, 2023 (2003)
Mazzoni S, Cerbino R, Brogioli D, Vailati A, Giglio M, Eur.Phys. J. E., 15, 305 (2004)
Kim MC, Hong JS, Choi CK, AIChE J., 52(7), 2333 (2006)
Kim MC, Kim LH, Yoon DY, Korean J. Chem. Eng., 26(2), 354 (2009)
Kim MC, Eur. Phys. J. E., 34, 27 (2011)
Hollingert S, Lucke M, Muller HW, Phys. Rev. E., 57, 4250 (1998)
Chen JC, Neitzel GP, Jankowski DF, Phys. Fluids., 28, 749 (1985)
Kim MC, Korean J. Chem. Eng., 29(12), 1688 (2012)
Ferziger JH, Peric M, Computational methods for fluid dynamics, 2nd Ed., Springer (2002)
Patankar SV, Numerical heat transfer and fluid flow, Hemisphere Pub. Co. (1980)
Cerbino R, Vailati A, Giglio M, Phys. Rev. Lett., 94, 064501 (2005)
Giavazzi F, Vailati A, Phys. Rev. E, 015303(R), 80 (2009)

