ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 14, 2012
Accepted July 19, 2012
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Non-Newtonian power-law flow across a confined triangular bluff body in a channel

Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
dhimuamit@rediffmail.com, amitdfch@iitr.ernet.in
Korean Journal of Chemical Engineering, January 2013, 30(1), 33-44(12), 10.1007/s11814-012-0117-x
downloadDownload PDF

Abstract

Wall effects on the flow of incompressible non-Newtonian power-law fluids across an equilateral triangular cylinder confined in a horizontal plane channel have been investigated for the range of conditions: Reynolds number, Re=1-40, power-law index, n=0.4-1.8 (covering shear-thinning, Newtonian and shear-thickening behaviors) and blockage ratio=0.125-0.5. Extensive numerical results on flow pattern, wake/recirculation length, individual and overall drag coefficients, variation of pressure coefficient on the surface of the triangular cylinder and so forth are reported to elucidate the combined effect of power-law index, blockage ratio and Reynolds number. The size of vortices decreases with an increase in the value of the blockage ratio and/or power-law index. For a fixed value of the Reynolds number, individual and overall drags decrease with decrease in power-law index and/or blockage ratio in steady confined flow regime. Simple correlations of wake length and drag are also obtained for the range of settings considered.

References

Chhabra RP, Richardson JF, Non-newtonian flow in the process industries, Butterworth-Heinemann, Oxford (1999)
Chhabra RP, Bubbles, Drops and Particles in Non-Newtonian Fluids, second Ed., CRC Press, Boca Raton, FL (2006)
D’Alessio SJD, Pascal JP, Acta Mechanica., 117, 87 (1996)
Chhabra RP, Soares AA, Ferreira JM, Acta Mechanica., 172, 1 (2004)
D'Alessio SJD, Finlay LA, Ind. Eng. Chem. Res., 43(26), 8407 (2004)
Soares AA, Ferreira JM, Chhabra RP, Ind. Eng. Chem. Res., 44(15), 5815 (2005)
Khan WA, Culham JR, Yovanovich MM, J. Heat Transfer., 128, 870 (2006)
Bharti RP, Chhabra RP, Eswaran V, Can. J. Chem. Eng., 84(4), 406 (2006)
Bharti RP, Chhabra RP, Eswaran V, Int. J. Heat Mass Transf., 50(5-6), 977 (2007)
Bharti RP, Chhabra RP, Ind. Eng. Chem. Res., 46(11), 3820 (2007)
Sivakumar P, Bharti RP, Chhabra RP, Chem. Eng. Sci., 61(18), 6035 (2006)
Shah MJ, Petersen EE, Acrivos A, AIChE J., 8, 542 (1962)
Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 110(2-3), 143 (2003)
Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 110(2-3), 177 (2003)
Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 121(1), 55 (2004)
Patnana VK, Bharti RP, Chhabra RP, Chem. Eng. Sci., 64(12), 2978 (2009)
Dhiman AK, Chhabra RP, Eswaran V, Chem. Eng. Res.Design., 84A, 300 (2006)
Dhiman AK, Anjaiah N, Chhabra RP, Eswaran V, Trans.ASME J. Fluids Eng., 129, 506 (2007)
Dhiman AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 148(1-3), 141 (2008)
Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 160(2-3), 157 (2009)
Sahu AK, Chhabra RP, Eswaran V, J. Non-Newton. Fluid Mech., 165(13-14), 752 (2010)
Rao PK, Sahu AK, Chhabra RP, Int. J. Heat Mass Transf., 54(1-3), 390 (2011)
Bouaziz M, Kessentini S, Turki S, Int. J. Heat Mass Transf., 53(23-24), 5420 (2010)
Prhashanna A, Sahu AK, Chhabra RP, Int. J. Therm. Sci., 50, 2027 (2011)
Abbassi H, Turki S, Ben Nasrallah S, Numerical Heat Transfer, Part A., 39, 307 (2001)
Abbassi H, Turki S, Ben Nasrallah S, Int. J. Therm. Sci., 40, 649 (2001)
De AK, Dalal D, ASME J. Heat Transfer., 129, 646 (2007)
Chattopadhyay H, Int. J. Therm. Sci., 46, 501 (2007)
Dhiman AK, Srikanth S, Steady state flow across a triangular cylinder placed in a channel, 62nd Annual Session of Indian Chemical Engineering Congress, CHEMCON 2009, Dept. of Chemical Eng., Andhra University, Viskhapatnam, India, Dec. 27-30 (2009)
Farhadi M, Sedighi K, Korayem AM, Int. J. Therm. Sci., 49, 1010 (2010)
Srikanth S, Dhiman AK, Bijjam S, Int. J. Therm. Sci., 49, 2191 (2010)
Ali M, Zeitoun O, Nuhait A, Int. J. Therm. Sci., 50, 106 (2011)
De AK, Dalal A, Int. J. Numerical Methods Fluids., 52, 801 (2006)
Dalal A, Eswaran V, Biswas G, Numer. Heat Transfer B., 54, 238 (2008)
Amit Kumar Dhiman, Fluid flow and heat transfer across a triangular cylinder, Proc. 20th National and 9th ISHMT-ASME Heat and Mass Transfer Conference, Paper No: 10HMTC185, Indian Institute of Technology Mumbai, India, Jan. 4-6 (2010)
Amit Kumar Dhiman and Radhe Shyam, Unsteady heat transfer across a triangular cylinder, Proc. 20th National and 9th ISHMT-ASME Heat and Mass Transfer Conference, Paper No: 10HMTC260, Indian Institute of Technology Mumbai, India, Jan. 4-6 (2010)
Zeitoun O, Mohamed Ali, Nuhait A, Int. J. Therm. Sci., 50, 1685 (2011)
Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, Second Ed., Wiley, New York (2002)
Dhiman A, Shyam R, ISRN Mech. Eng., 2011, 1 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로