Articles & Issues
- Language
- English
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 2, 2011
Accepted December 1, 2011
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Evaluation of sediments of the waste from beer fermentation broth for bioethanol production
1Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea 2Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
parkjk@knu.ac.kr
Korean Journal of Chemical Engineering, September 2012, 29(9), 1224-1231(8)
https://doi.org/10.1007/s11814-011-0293-0
https://doi.org/10.1007/s11814-011-0293-0
Abstract
As our previous studies showed, the waste from beer fermentation broth (WBFB) is a potential resource for bio-ethanol production. The original WBFB was superior to the supernatant in this regard. The current study investigates the potential of the WBFB sediment alone for bio-ethanol production after it has been diluted with distilled water or a chemically-defined medium. The effect of stock time on WBFB sediments for ethanol production was also studied. The fermentations were carried out using 50 ml vials placed in a bioreactor in static conditions. There was relatively little increase in ethanol production with fermentation time (up to 2 h) and stock time (up to 7 days) using 20% (v/v) sediment in distilled water which did not contain any nutrients or enzymes. A 2.09% increase in ethanol production was recorded after 2 h fermentation with 20% (v/v) WBFB sediments (1 day old) in a chemically-defined medium. The increase was 3.25% for WBFB sediments with a stock time of three days in a chemically-defined medium. The_x000D_
results also showed some residual activity of starch hydrolyzing enzymes in the sediments, especially at 60 ℃. The overall results of this study revealed that the sediments alone were capable of bio-ethanol production even though they were five-fold diluted with distilled water or the chemically-defined medium.
References
O’Grady J, Morgan JA, Bioprocess Biosyst. Eng., 34, 121 (2011)
Akpan UG, Alhakim AA, Ijah UJJ, Leonardo Electron.J. Pract. Technol., 7, 1 (2008)
Song HS, Ramkrishna D, Korean J. Chem. Eng., 27(2), 576 (2010)
Li H, Yang L, Kim YJ, Kim SJ, Korean J. Chem. Eng., 28(4), 1085 (2011)
Ha JH, Shah N, Ul-Islam M, Park JK, Enzyme Microb. Technol., 49(3), 298 (2011)
Kadar Z, Szengyel Z, Reczey K, Ind. Crop. Prod., 20, 103 (2004)
Jeya M, Zhang YW, Kim IW, Lee JK, Bioresour. Technol., 100(21), 5155 (2009)
Krishna SH, Prasanthi K, Chowdary GV, Ayyanna C, Process Biochem., 33(8), 825 (1998)
Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ, Enzyme Microb. Technol., 31, 74 (2002)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Amin S, Energy Conv. Manag., 50(7), 1834 (2009)
Xu F, Shi YC, Wu X, Theerarattananoon K, Staggenborg S, Wang D, Bioprocess Biosyst. Eng., 34, 485 (2011)
Boyle M, Barron N, Mchale AP, Biotechnol. Lett., 19(1), 49 (1997)
Prasad S, Singh A, Joshi HC, Resour. Conserv. Recycl., 50, 1 (2007)
Zertuche L, Zall RR, Biotechnol. Bioeng., 24, 57 (1982)
Khan T, Hyun SH, Park JK, Enzyme Microb. Technol., 42(1), 89 (2007)
Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812 (2008)
Shezad O, Khan S, Khan T, Park JK, Korean J. Chem. Eng., 26(6), 1689 (2009)
Khan T, Park JK, Carbohydr. Polym., 73, 438 (2008)
Halanych KM, Mol. Phylogenet. Evol., 4, 72 (1995)
Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A, Appl. Environ.Microb., 680, 5136 (2002)
Schell DJ, Hinman ND, Wyman CE, Werdene PJ, Appl.Biochem. Biotechnol., 24/25, 287 (1990)
Alam MZ, Kabbashi NA, Hussin SNIS, J. Ind. Microbiol.Biotechnol., 36, 801 (2009)
Gomez ME, Igartuburu JM, Pando E, Luis FR, Mourente G, J. Agric. Food Chem., 52, 4791 (2004)
Salvado Z, Arroyo-Lopez FN, Guillamon JM, Salazar G, Querol A, Barrio E, Appl. Environ. Microb., 77, 2292 (2011)
Schmidt SA, Tran T, Chambers PJ, Herderich MJ, Pretorius IS, Aust. N.Z. Wine Ind. J., 21, 24 (2006)
Lynd LR, Ahn HJ, Anderson G, Hill P, Kersey DS, Klapatch T, Appl. Biochem. Biotechnol., 28/29, 549 (1991)
Banat IM, Nigam P, Singh D, Marchant R, Mchhale AP, J.Microbiol. Biotechnol., 14, 809 (1998)
Lloyd D, Lloyd S, Carlsen HN, Degn H, JamesPE, Towlands CC, Yeast., 825 (1993)
Piper PW, Fems Microbiol. Rev., 11, 339 (1993)
Piper PW, FEMS Microbiol. Lett., 134, 121 (1995)
Boubekeur S, Camougrand N, Bunoust O, Rigoult M, Guerin B, Eur. J. Biochem., 268, 5057 (2001)
Bauer C, Herzog V, Bauer MF, Microsc. Microanal., 7, 530 (2001)
Kohler RE, J. Hist. Biol., 5, 327 (1972)
Allain EJ, J. Chem. Technol. Biotechnol., 82(2), 117 (2007)
Stark E, Tetrault PA, J. Bacteriol., 62, 247 (1951)
Takao S, Sasaki H, Kurosawa K, Tanida M, Kamagata Y, Agric. Biol. Chem., 50, 1979 (1986)
Akpan UG, Alhakim AA, Ijah UJJ, Leonardo Electron.J. Pract. Technol., 7, 1 (2008)
Song HS, Ramkrishna D, Korean J. Chem. Eng., 27(2), 576 (2010)
Li H, Yang L, Kim YJ, Kim SJ, Korean J. Chem. Eng., 28(4), 1085 (2011)
Ha JH, Shah N, Ul-Islam M, Park JK, Enzyme Microb. Technol., 49(3), 298 (2011)
Kadar Z, Szengyel Z, Reczey K, Ind. Crop. Prod., 20, 103 (2004)
Jeya M, Zhang YW, Kim IW, Lee JK, Bioresour. Technol., 100(21), 5155 (2009)
Krishna SH, Prasanthi K, Chowdary GV, Ayyanna C, Process Biochem., 33(8), 825 (1998)
Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ, Enzyme Microb. Technol., 31, 74 (2002)
Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
Amin S, Energy Conv. Manag., 50(7), 1834 (2009)
Xu F, Shi YC, Wu X, Theerarattananoon K, Staggenborg S, Wang D, Bioprocess Biosyst. Eng., 34, 485 (2011)
Boyle M, Barron N, Mchale AP, Biotechnol. Lett., 19(1), 49 (1997)
Prasad S, Singh A, Joshi HC, Resour. Conserv. Recycl., 50, 1 (2007)
Zertuche L, Zall RR, Biotechnol. Bioeng., 24, 57 (1982)
Khan T, Hyun SH, Park JK, Enzyme Microb. Technol., 42(1), 89 (2007)
Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812 (2008)
Shezad O, Khan S, Khan T, Park JK, Korean J. Chem. Eng., 26(6), 1689 (2009)
Khan T, Park JK, Carbohydr. Polym., 73, 438 (2008)
Halanych KM, Mol. Phylogenet. Evol., 4, 72 (1995)
Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A, Appl. Environ.Microb., 680, 5136 (2002)
Schell DJ, Hinman ND, Wyman CE, Werdene PJ, Appl.Biochem. Biotechnol., 24/25, 287 (1990)
Alam MZ, Kabbashi NA, Hussin SNIS, J. Ind. Microbiol.Biotechnol., 36, 801 (2009)
Gomez ME, Igartuburu JM, Pando E, Luis FR, Mourente G, J. Agric. Food Chem., 52, 4791 (2004)
Salvado Z, Arroyo-Lopez FN, Guillamon JM, Salazar G, Querol A, Barrio E, Appl. Environ. Microb., 77, 2292 (2011)
Schmidt SA, Tran T, Chambers PJ, Herderich MJ, Pretorius IS, Aust. N.Z. Wine Ind. J., 21, 24 (2006)
Lynd LR, Ahn HJ, Anderson G, Hill P, Kersey DS, Klapatch T, Appl. Biochem. Biotechnol., 28/29, 549 (1991)
Banat IM, Nigam P, Singh D, Marchant R, Mchhale AP, J.Microbiol. Biotechnol., 14, 809 (1998)
Lloyd D, Lloyd S, Carlsen HN, Degn H, JamesPE, Towlands CC, Yeast., 825 (1993)
Piper PW, Fems Microbiol. Rev., 11, 339 (1993)
Piper PW, FEMS Microbiol. Lett., 134, 121 (1995)
Boubekeur S, Camougrand N, Bunoust O, Rigoult M, Guerin B, Eur. J. Biochem., 268, 5057 (2001)
Bauer C, Herzog V, Bauer MF, Microsc. Microanal., 7, 530 (2001)
Kohler RE, J. Hist. Biol., 5, 327 (1972)
Allain EJ, J. Chem. Technol. Biotechnol., 82(2), 117 (2007)
Stark E, Tetrault PA, J. Bacteriol., 62, 247 (1951)
Takao S, Sasaki H, Kurosawa K, Tanida M, Kamagata Y, Agric. Biol. Chem., 50, 1979 (1986)

