ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 17, 2011
Accepted December 30, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Pinch based approach to estimate CO2 capture and storage retrofit and compensatory renewable power for South Korean electricity sector

School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea
chhan@snu.ac.kr
Korean Journal of Chemical Engineering, September 2012, 29(9), 1163-1170(8)
https://doi.org/10.1007/s11814-011-0302-3
downloadDownload PDF

Abstract

A pinch-based approach has been used to calculate optimum values of CO2 capture and storage (CCS) retrofit and compensatory renewable power for the Korean electricity sector. Three cases are proposed. In the first case, KEPCO 2020 power generation forecast data were used to calculate CO2 emissions and a 30% emission reduction target applied. For the second case, nuclear-free KEPCO 2020 forecast was used to calculate emissions along with 30% emissions reduction. In the third case, the emissions reduction target increased from 30% to 54.50% for case-2 scenario, in order to achieve 2005 emissions level. Results show that CCS retrofit and compensatory renewable power for case 3 is 2.6 times higher than case 1 and 1.8 times higher than case 2. According to sensitivity analysis results, CCS retrofit and compensatory renewable power for case 3 is more sensitive to CO2 removal ratio and parasitic energy loss ratio, respectively, as compared to case 1 and case 2.

References

Quadrelli R, Peterson S, Energy Policy., 35(11), 5538 (2007)
Weisser D, Energy, 32(9), 1543 (2007)
Jefferson M, Energy Policy, 36(11), 4116 (2008)
Buhre BJP, Elliot LK, Sheng CD, Gupta RP, Wall TF, Progress in Energy and Combustion Science., 31(4), 283 (2005)
Wall TF, Proceedings of the Combustion Institute., 31, 31 (2007)
Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, J. Environ. Sci., 20, 14 (2008)
Riahi K, Rubin ES, Schrattenholzer L, Energy, 29(9-10), 1309 (2004)
Andersson K, Johnsson F, Energy Conv. Manag., 47(18-19), 3487 (2006)
Lee U, Lim Y, Lee S, Jung J, Han C, Ind. Eng. Chem. Res., 51(1), 389 (2012)
Moller BF, Assadi M, Potts I, Energy, 31(10-11), 1520 (2006)
Jung J, Lim Y, Jeong YS, Lee U, Yang S, Han C, Korean Chem. Eng. Res., 49(6), 764 (2011)
http://www.reuters.com/article/2011/06/15/energy-summit-korea-idUSL3E7HF0VV20110615.
Linnhoff B, Townsend DW, Boland D, Hewitt GF, Thomas BEA, Guy AR, A user guide on process integration for the efficient use of energy, Institution of Chemical Engineers, Rugby (1982)
El-Halwagi MM, Manousiothakis V, AIChE J., 36, 1209 (1990)
El-Halwagi MM, Pollution prevention through process integration: Systematic design tools, Academic Press, San Diego (1997)
El-Halwagi MM, Process integration, Elsevier Inc., Amsterdam (2006)
Wang YP, Smith R, Chem. Eng. Sci., 49(7), 981 (1994)
Hallale N, Adv. Environ. Res., 6(3), 377 (2002)
El-Halwagi MM, Gabriel F, Harell D, Ind. Eng. Chem. Res., 42(19), 4319 (2003)
Manan ZA, Tan YL, Foo DCY, AIChE J., 50(12), 3169 (2004)
Prakash R, Shenoy UV, Chem. Eng. Sci., 60(1), 255 (2005)
Ng DKS, Foo DCY, Tan RR, Ind. Eng. Chem. Res., 46(26), 9107 (2007)
Ng DKS, Foo DCY, Tan RR, Ind. Eng. Chem. Res., 46(26), 9114 (2007)
Towler GP, Mann R, Serriere AJ, Gabaude CM, Ind. Eng. Chem. Res., 35(7), 2378 (1996)
Alves JJ, Towler GP, Ind. Eng. Chem. Res., 41(23), 5759 (2002)
Agrawal V, Shenoy UV, AIChE J., 52(3), 1071 (2006)
Foo DCY, Manan ZA, Ind. Eng. Chem. Res., 45(17), 5986 (2006)
Kazantzi V, El-Halwagi MM, Chem. Eng. Prog., 101(8), 28 (2005)
Foo DCY, Kazantzi V, El-Halwagi MM, Manan ZA, Chem. Eng. Sci., 61(8), 2626 (2006)
Smith r, Delaby o, Chem. Eng. Res. Design., 69, 492 (1992)
Dhole VR, Linnhoff B, Computer Chem. Eng., 17(S1), S101 (1993)
Linnhoff B, Dhole VR, Chem. Eng. Technol., 16, 252 (1993)
Klemes J, Dhole VR, Raissi K, Perry SJ, Puigjaner L, Appl.Thermal Eng., 17, 993 (1997)
Gorsek A, Glavic P, Bogataj M, Chem. Eng. Process., 45(5), 372 (2006)
Perry S, Klemes J, Bulatov I, Energy, 33(10), 1489 (2008)
Tan RR, Foo DCY, Energy, 32(8), 1422 (2007)
Lee SC, Ng DKS, Foo DCY, Tan RR, Appl. Energy, 86(1), 60 (2009)
Foo DCY, Tan RR, Ng DKS, Energy, 33(10), 1480 (2008)
Crilly D, Zhelev T, Energy, 33(10), 1498 (2008)
Atkins MJ, Morrison AS, Walmsley MRW, Paper presented in Society of Chemical Engineers New Zealand Annual Conference (SCENZ08), New Zealand (2008)
Raymond R. Tan, Denny Kok Sum Ng, Dominic Chwan Yee Foo, Journal of Cleaner Production., 17(10), 940 (2009)
http://www.greengrowth.go.kr/english/en_subpolicy/en_greenhouse/en_greenhouse.cms.
Table 2.16, The 5th Basic Plan for Long-term Electricity Supply and Demand (2010-2024) http://cyber.kepco.co.kr/kepco_new/eng/ir/resource/powerStatistics.jsp?gubun=J.
http://en.wikipedia.org/wiki/Fukushima_Daiichi_Nuclear_Power_Plant#Nuclear_disaster_of_2011.
http://en.wikipedia.org/wiki/Nuclear_power_phase-out.

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
TEL. No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로