ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 8, 2002
Accepted November 19, 2002
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Oxidation and Reduction of the Metal Surface in Supported Pt Using Dissociative N2O Adsorption Coupled with H2 and CO Titration

Department of Environmental, Civil and Architectural Engineering, Daegu University, 15 Naeri, Jillryang, Gyeongsan 712-714, Korea 1Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-4400, USA
moonkim@daegu.ac.kr
Korean Journal of Chemical Engineering, March 2003, 20(2), 247-255(9), 10.1007/BF02697236
downloadDownload PDF

Abstract

Not only was the surface site density in a 0.78% Pt/SiO2 catalyst determined by using selective chemisorption techniques, but the surface chemistry related to decompositive N2O adsorption on the Pt surface was also described by in situ DRIFTS techniques. The “O” coverage established by N2O decomposition at 363 K on a clean Pt surface was equal to that via hydrogen adsorption at 300 K; however, both the coverage of chemisorbed oxygen via O2 chemisorption at 300 K and the COirr coverage were somewhat lower than the “O” monolayer coverage. Surface titration of the “O”-covered Pt crystallites after N2O decomposition at 363 K gave a consistent Pts density with the hydrogen chemisorption. In situ DRIFTS spectra of CO adsorbed at 300 K on both clean and H-covered Pt surfaces exhibited a strong peak at 2,076 cm(-1) for linearly adsorbed CO with a small extent of multi-coordinated CO near 1,803 cm(-1). The adsorption of CO at 300 K on an “O”-covered Pt surface via dissociative N2O adsorption at 363 K appeared subsequently a band at 2,186 cm(-1) due to a tiny amount of PtsO crystallites, which could be completely reduced to H-covered ones, when titrated with H2 at 300 K. The adequate description for these CO adsorption behaviors on different surfaces is PtsO+2CO(g)→PtsCO+CO2(g), although to very small extent, the addition onto PtsO occurs. Spectra of CO adsorbed on the oxidized Pts via N2O decomposition gave consistent surface chemistry with in situ gravimetric measurements. The surface reactions acquired by DRIFTS spectra potentially offer an approach to remove N2O from emission sources by combining its catalytic dissociation with titration of the chemisorbed “O” atoms using either H2 or CO, particularly H2 because of complete recovery to a clean Pts.

References

Avery NR, Surf. Sci., 131, 501 (1983) 
Balakrishnan K, Sachdev A, Schwank J, J. Catal., 121, 441 (1990) 
Bare SR, Hofman P, King DA, Surf. Sci., 144, 347 (1984) 
Barker FG, Gasser RPH, Surf. Coat. Technol., 39, 136 (1973)
Barshad Y, Zhou X, Gulari E, J. Catal., 94, 128 (1985) 
Barteau MA, Ko EI, Madix RJ, Surf. Sci., 102, 99 (1981) 
Behm RJ, Thiel PA, Norton PR, Ertl G, J. Chem. Phys., 78, 7437 (1983) 
Benesi HA, Curtis RM, Studer HP, J. Catal., 10, 328 (1968) 
Benson JE, Boudart M, J. Catal., 4, 704 (1965) 
Berndt H, Muller U, Appl. Catal. A: Gen., 180(1-2), 63 (1999) 
Candy JP, Fouilloux P, J. Chem. Soc.-Faraday Trans., 76, 616 (1980) 
Dandekar A, Vannice MA, J. Catal., 178(2), 621 (1998) 
Daniel WM, Kim Y, Peebles HC, White JM, Surf. Sci., 111, 189 (1981) 
Dell RM, Stone FS, Tiley PF, Trans. Faraday Soc., 49, 195 (1953) 
Eischens RP, Pliskin WA, Adv. Catal., 10, 1 (1958)
Eischens RP, Pliskin WA, Francis SA, J. Chem. Phys., 22, 1786 (1954) 
Freel J, J. Catal., 25, 149 (1972) 
Frennet A, Wells PB, Appl. Catal., 18, 243 (1985) 
Froitzheim H, Hopster H, Ibach H, Lehwald S, Appl. Phys., 13, 147 (1977) 
Fuggle JC, Menzel D, Surf. Sci., 79, 1 (1979) 
Gardner P, Martin R, Tushaus M, Bradshaw AM, J. Electron. Spectrosc. Rel. Phen., 54-55, 619 (1990) 
Gasser RPH, Marsay CJ, Surf. Sci., 20, 116 (1970) 
Greenler RG, Burch KD, Kretschmar K, Klauser R, Bradshaw AM, Hayden BE, Surf. Sci., 152-153, 338 (1985) 
Haaland DM, Surf. Sci., 185, 1 (1987) 
Hadjiivanov K, J. Chem. Soc.-Faraday Trans., 94, 1901 (1998) 
Hayden BE, Kretschmar K, Bradshaw AM, Greenler RG, Surf. Sci., 149, 394 (1985) 
Hoffman DA, Hudson JB, Surf. Sci., 180, 77 (1987) 
Huang SJ, Walters AB, Vannice MA, J. Catal., 192(1), 29 (2000) 
Humblot F, Didillon D, Lepeltier F, Candy JP, Corker J, Clause O, Bayard F, Basset JM, J. Am. Chem. Soc., 120(1), 137 (1998) 
Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 208(2), 381 (2002) 
Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 204(2), 348 (2001) 
Kim MH, Vannice MA, "Reaction of Chemisorbed Oxygen via N2O Decomposition on Supported Pt Catalyst with CO," to be submitted for publication
Kim Y, Schriefels JA, White JM, Surf. Sci., 114, 349 (1982) 
Klingenberg B, Vannice MA, Appl. Catal. B: Environ., 21(1), 19 (1999) 
Liotta LF, Martin GA, Deganello G, J. Catal., 164(2), 322 (1996) 
Mears DE, Hansford RC, J. Catal., 9, 125 (1967) 
Na BK, Walters AB, Vannice MA, J. Catal., 140, 585 (1993) 
Narita K, Takezawa N, Kobayashi H, Toyoshima I, React. Kinet. Catal. Lett., 19, 91 (1982) 
Palmer MB, Vannice MA, J. Chem. Technol. Biotechnol., 30, 205 (1980)
Scholten JJF, Konvalinka JA, Trans. Faraday Soc., 65, 2465 (1969) 
Sen B, Vannice MA, J. Catal., 130, 9 (1991) 
Seyedmonir SR, Strohmayer DE, Geoffroy GL, Vannice MA, Young HW, Linowski JW, J. Catal., 87, 424 (1984) 
Shigeishi RA, King DA, Surf. Sci., 58, 379 (1976) 
Shin EW, Cho SI, Kang JH, Kim WJ, Park JD, Moon SH, Korean J. Chem. Eng., 17(4), 468 (2000)
Shun D, Chang HS, Park YS, Bae DH, Jin GT, Korean J. Chem. Eng., 18(5), 630 (2001)
Sinfelt JH, Prog. Solid State Chem., 10, 55 (1975) 
Solymosi F, Knozinger H, J. Catal., 122, 166 (1990) 
Song JH, Seo KW, Mok YI, Park KY, Ahn BS, Korean J. Chem. Eng., 19(2), 246 (2002)
Umbach E, Menzel D, Chem. Phys. Lett., 84, 491 (1981) 
Vannice MA, Benson JE, Boudart M, J. Catal., 16, 348 (1970) 
Vannice MA, Twu CC, J. Catal., 82, 213 (1983) 
Venus D, Hensley DA, Kesmodel LL, Surf. Sci., 199, 391 (1988) 
Weinberg WH, J. Catal., 28, 459 (1973) 
Wells PB, Appl. Catal., 18, 259 (1985) 
Wilson GR, Hall WK, J. Catal., 17, 190 (1970) 
Yates DJC, Sinfelt JH, J. Catal., 8, 348 (1967) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로