ISSN: 0256-1115 (print version) ISSN: 1975-7220 (electronic version)
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
English
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

PREDICTION OF PVT BEHAVIOR OF POLYMER MELTS BY THE GROUP-CONTRIBUTION LATTICE-FLUID EQUATION OF STATE

Korean Journal of Chemical Engineering, January 1998, 15(1), 37-44(8), 10.1007/BF02705303
downloadDownload PDF

Abstract

The group-contribution lattice-fluid equation of state (GCLF-EOS), which is capable of predicting equilibrium behavior in polymer systems, was developed by establishing group contributions of the lattice-fluid EOS using the PVT properties of low molecular weight compounds only. This model was used to predict the PVT behavior of common polymers over a wide temperature range in the melt region and over a wide range of pressures up to about 2,000 bar. The GCLF-EOS predicted accurately the effect of pressure and temperature on the specific volumes of the polymer melts. Prediction results by the GCLF-EOS were compared with those by the group-contribution volume (GCVOL) method. The GCLF-EOS requires only the structure of the polymer repeat unit in terms of their functional groups as input information. No other polymer properties are needed. The GCLF-EOS is the only model that is capable of predicting the specific volumes of polymer melts as a function of temperature and pressure.

References

Barlow JW, Polym. Eng. Sci., 18, 238 (1978) 
Beret S, Prausnitz JM, Macromolecules, 8, 536 (1975) 
Danner RP, High MS, "Handbook of Polymer Solution Thermodynamics," Design Institute for Physical Property Data, American Institute of Chemical Engineers, New York (1993)
Daubert TE, Danner RP, "Physical and Thermodynamic Properties of Pure Compounds: Data Compilation," Taylor and Francis, New York, extent (1994)
Elbro HS, Fredenslund A, Rasmussen P, Ind. Eng. Chem. Res., 30, 2576 (1991) 
Fedors RF, Polym. Eng. Sci., 14, 147 (1974) 
Flory PJ, Oriji RA, Vrij A, J. Am. Chem. Soc., 86, 3507 (1964) 
Fredenslund A, Gmehling J, Rasmussen P, "Vapor-Liquid Equilibria Using UNIFAC," Elsevier Scientific Publishing, New York (1977)
Guggenheim EA, "Mixtures," Clarendon Press, Oxford (1952)
Hellwege VKH, Knappe W, Lehmann P, Kolloid-Z. Z. Polym., 183, 110 (1962)
Lee BC, Danner RP, Fluid Phase Equilib., 117(1-2), 33 (1996) 
Lee BC, Danner RP, AIChE J., 42(3), 837 (1996) 
Lee BC, "Prediction of Phase Equilibria in Polymer Solutions," Ph.D. Dissertation, The Pennsylvania State University, University Park, PA (1995)
Lichtenthaler RN, Liu DD, Prausnitz JM, Macromolecules, 11, 192 (1978) 
Nanda VS, Simha R, J. Chem. Phys., 41, 3870 (1964) 
Olabisi O, Simha R, Macromolecules, 8, 206 (1975) 
Panayiotou C, Vera JH, Polym. Eng. Sci., 22, 345 (1982) 
Panayiotou C, Vera JH, Polym. J., 14, 681 (1982) 
Rackett HG, J. Chem. Eng. Data, 15, 514 (1970) 
Sanchez IC, Lacombe RH, J. Phys. Chem., 80, 2352 (1976) 
Simha R, Somcynsky T, Macromolecules, 2, 342 (1969) 
Spencer CF, Danner RP, J. Chem. Eng. Data, 17, 236 (1972) 
Starkweather HW, Jones GA, Zoller P, J. Polym. Sci., 26, 257 (1988)
Tsujita Y, Nose T, Hata T, Polym. J., 5, 201 (1973) 
VanKrevelen DW, Hoftyzer PJ, "Properties of Polymers: Correlation with Chemical Structure," Elsevier Scientific, Amsterdam (1972)
Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 277 (1995)
Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 289 (1995)
Zoller P, Bolli R, Pahud V, Ackermann H, Rev. Sci. Instrum., 47, 948 (1976) 
Zoller P, "PVT Relationships and Equations of State of Polymers," Chapter VI, Polymer Handbook, 3rd ed., Brandr up, J. and Immergut, E.H., eds., Wiley-Interscience, New York, 475 (1989)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Journal of Chemical Engineering 상단으로