ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 24, 2024
Revised February 26, 2025
Accepted March 24, 2025
Available online May 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

고정층 반응기에서의 NaBO2 환원재생 연구

Regeneration of NaBH4 from NaBO2 Using The Large-scaled Packed Bed Reactor

한국에너지기술연구원 CCS 연구단
CCS Research Laboratory, Korea Institute of Energy Research
hakjukim@kier.re.kr
Korean Chemical Engineering Research, May 2025, 63(2), 105112
https://doi.org/10.9713/kcer.2025.63.2.105112
downloadDownload PDF

Abstract

금속 수소화합물은 높은 질량 당 수소 밀도를 갖고, 저장 및 운송이 용이하다. 금속 수소화합물을 활용하면 상온 상 압 조건에서 수소를 생산할 수 있어, 미래 수소 생산 방법으로 여겨진다. 그에 비해 수소 생산 후 사용 후 연료의 사용 방안에 대한 연구는 미비한 실정이다. 본 연구는 NaBH4의 사용 후 연료 인 NaBO2 재생 연구를 진행하였다. NaBH4는 10.8 wt%의 높은 수소 함유량을 가지고 있어 금속수소화합물 중에도 널리 연구되고 있다. 효과적인 NaBO2 대량 처리를 위해 본 연구는 기존 NaBH4 재생에 활용되던 볼 밀 방식 대신 고정층 반응기를 활용하여 반응압력, 반응 온도, 환원 제와 혼합비의 영향을 살펴보았다. NaBO2 재처리를 위해 환원제로 Mg 파우더와 기체상 수소를 사용하였다. 반응물 및 생성물은 XRD, SEM, FTIR을 사용하여 반응 전 후 금속 및 유기물의 구성성분, 형상 변화를 분석하였다. 생성된 NaBH4는 에 틸렌 다이아민을 사용하여 추출하였다. 반응 및 추출 결과 NaBO2:Mg 혼합비 1:2, 반응온도 550℃, 반응압력 35 bar, 반응시간 2h에서 재생 수율 63.9%를 달성하였다.

Hydrogen storage mediums are considered promising for hydrogen production due to simple transportation and storage. NaBH4 is extensively studied as a potential medium due to its high hydrogen capacity (10.8 wt%) and mild production conditions. Despite its critical role in sustainable hydrogen production, the utilization of NaBO2 has received less attention. NaBO2 can be regenerated using reducing agents such as NaH, MgH2, Mg and gaseous hydrogen. Ball milling is widely employed for room-temperature regeneration under low pressure, but it has limited application on large scale. This study performed the regeneration of NaBO2 using a packed bed reaction system with enlarged amount of NaBO2-Mg mixture. On optimized experiment condition at 550℃, 35 bar and a 1:2 NaBO2:Mg weight ratio, NaBH4 yield was 63.9%. These findings highlight the potential for scalable regeneration of NaBH4 under controlled conditions.

References

1. He, T., Pachfule, P., Wu, H., Xu, Q. and Chen, P., “Hydrogen Carriers,” Nat. Rev. Mater., 1(6), 1-8(2016).
2. Shin, S., Kim, Y., Jin, J. H. and Jung, J., “Heat-Induced Dry Hydrolysis of Sodium Borohydride/Oxalic Acid Dihydrate Composite for Hydrogen Production,” ACS Omega, 7(1), 979-986(2022).
3. Zhang, J., Li, H., Xiao, X. and Ouyang, L., “Preparation and Regeneration of Metal Borohydrides for High-density Hydrogen Supply: Progress, Challenges, and Perspectives,” J. Alloys Compd., 951, 169887(2023).
4. Lang, C., Jia, Y., Liu, J., Wang, H., Ouyang, L., Zhu, M. and Yao, X., “NaBH4 Regeneration from NaBO2 by High-energy Ball Milling and Its Plausible Mechanism,” Int. J. Hydrogen Energy, 42(19), 13127-13135(2017).
5. Ouyang, L., Chen, W., Liu, J., Felderhoff, M., Wang, H., Zhu, M., “Enhancing the Regeneration Process of Consumed NaBH4 for Hydrogen Storage,” Adv. Energy Mater., 7(17), 1-8(2017).
6. Zhong, H., Ouyang, L., Liu, J., Peng, C., Zhu, X., Zhu, W., Fang, F.
and Zhu, M., “Sodium Borohydride Regeneration via Direct Hydrogen Transformation of Sodium Metaborate Tetrahydrate,” J. Power Sources, 390, 71-77(2018).
7. Kojima, Y. and Haga, T., “Recycling Process of Sodium Metaborate to Sodium Borohydride,” Int. J. Hydrogen Energy, 28(9), 989-993(2003).
8. Liu, B. H., Li, Z. P. and Suda, S., “Improving MgH2 Formation Kinetics and Its Effect on NaBH4 Synthesis,” J. Alloys Compd., 474(1-2), 321-325(2009).
9. Eom, K., Cho, E., Kim, M., Oh, S., Nam, S. W. and Kwon, H., “Thermochemical Production of Sodium Borohydride From Sodium Metaborate in a Scaled-up Reactor,” Int. J. Hydrogen Energy, 38(7), 2804-2809(2013).
10. Suda, S., Morigasaki, N., Iwase, Y. and Li, Z. P., “Production of Sodium Borohydride by Using Dynamic Behaviors of Protide at the Extreme Surface of Magnesium Particles,” J. Alloys Compd., 404-406, 643-647(2005).
11. Li, Z. P., Liu, B. H., Zhu, J. K., Morigasaki, N. and Suda, S., “NaBH4 Formation Mechanism by Reaction of Sodium Borate With Mg and H2,” J. Alloys Compd., 437(1–2), 311-316(2007).
12. Ouyang, L., Zhong, H., Li, H. W. and Zhu, M., “A Recycling Hydrogen Supply System of NaBH4 Based on a Facile Regen eration Process: A Review,” Inorganics, 6(1), 1-10(2018).
13. Sari Yilmaz, M., Kantürk Figen, A. and Pişkin, S., “Production of Sodium Metaborate Tetrahydrate (NaB(OH)₄·2H₂O) Using Ultrasonic Irradiation,” Powder Technol., 215-216, 166-173(2012).
14. Kojima, Y. and Ohfuji, H., “Structure and Stability of Carbon Nitride Under High Pressure and High Temperature up to 125 GPa and 3000 K,” Diam. Relat. Mater., 39, 1-7(2013).
15. Kumar, S., Jain, A., Miyaoka, H., Ichikawa, T. and Kojima, Y., “Study on the Thermal Decomposition of NaBH4 Catalyzed by ZrCl4,” Int. J. Hydrogen Energy, 42(33), 22432-22437(2017).
16. Liu, B. H., Li, Z. P., Morigasaki, N. and Suda, S., “Kinetic Characteristics of Sodium Borohydride Formation When Sodium Metaborate Reacts With Magnesium and Hydrogen,” Int. J. Hydrogen Energy, 33(5), 1323-1328(2008).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로