Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 22, 2016
Accepted February 5, 2016
Available online June 14, 2016
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
탈지미세조류로부터 폴리페놀 생산 증대를 위한 열수추출 조건 최적화
Optimization of Hot-water Extraction Conditions of Polyphenolic Compounds from Lipid Extracted Microalgae
선문대학교 식품과학과, 31460 충남 아산시 탕정면 선문로 221번길 70
Department of Food Science, Sunmoon University, 70, Sunmoon-ro 221beon-gil, Tangjeong-myeon, Asan, Chungnam, 31460, Korea
kimjw1028@sunmoon.ac.kr
Korean Chemical Engineering Research, June 2016, 54(3), 310-314(5)
https://doi.org/10.9713/kcer.2016.54.3.310
https://doi.org/10.9713/kcer.2016.54.3.310
Download PDF
Abstract
합성 항산화제에 대한 대체제로 천연 항산화제에 대한 연구가 활발히 진행되고 있으며 미세조류는 천연 항산화제의 원료로 많은 관심을 받고 있다. 본 연구에서는 탈지미세조류에서 총 폴리페놀(TPC) 추출증대를 위해 추출용매, 온도, 시간, 고액비율과 에탄올 첨가 농도 최적화를 수행하였다. 열수와 유기용매 추출성능을 비교했을 때, 열수추출이 유기용매 보다 우수한 성능을 보였으며 온도 증가에 따라 추출성능도 비례하여 증가함을 보였다. 열수에 의한 추출이 에탄올용액 추출(>98%)에 비해 우수한 성능을 보였으며40% 에탄올 용액을 이용한 열수 추출이 가장 우수한 추출 효과를 보였다. 추출조건10 min, 100℃, 40% 에탄올 열수추출에서 최대 폴리페놀 농도인 3.35 mg GAE (gallic acid equivalent)/g DM을 얻을 수 있었다. 지질 추출을 위한 유기용매 전처리 공정이 선수행 되었음에도 불구하고 탈지미세조류(Tetraselmis KCTC 12236BP)의 폴리페놀 농도가 다른 탈지이전 미세조류와 동등한 수준임을 확인할 수 있어 탈지미세조류가 천연 폴리페놀의 원료로서 적합함을 확인 할 수 있었다. 또한, 고액추출을 모사하기 위해 Peleg 모델을 이용해 예측한 폴리페놀 농도가 실험에 의해 얻어진 값과 높은 일치도를 보임으로 모델을 이용한 모사가 폴리페놀 추출 모사에 유용함을 증명할 수 있었다.
The search for natural antioxidants as alternatives to synthetic products is growing. Microalgae have emerged as a source of natural antioxidants with significant and diverse health-promoting properties. In this study, the effects of hot-water extraction conditions on total polyphenol compounds (TPC) production were investigated for lipid extracted microalgae (LEA). In order to enhance the polyphenol productivity, the extraction variables including solvents, temperature, time and ethanol concentration were optimized. The results showed hot-water extraction provided a higher extraction efficiency than the organic solvents and extraction at high temperatures showed a better extraction efficiency. While hot-water extract showed a higher extraction efficiency compared to 98% ethanol extraction, the mixture of water and ethanol (40:60 v/v) showed the highest production of polyphenols. The maximum polyphenols of 3.35 mg GAE (gallic acid equivalent)/g DM were obtained at the optimized extraction time of 10 min, 100 ℃ and 40% ethanol, respectively. Although Tetraselmis KCTC 12236BP was preprocessed by hexane to remove lipid for bio-diesel production, the results showed LEA contains relatively high level of polyphenols compared to untreated microalgae which can be used in the production of value-added materials. The predictions obtained from the developed Peleg’s model were compared with the experimental data under the same operating conditions. The predicted and experimental data were consistent, indicating the reliability of the model.
Keywords
References
Jang SY, Kim JS, Korean Chem. Eng. Res., 52(4), 430 (2014)
Sindhu R, Binod P, Pandey A, Bioresour. Technol., 199, 76 (2016)
Ryu YJ, Seong DH, Lim SM, Lee CG, Korean Soc. New Renewable Energy, 5, 96 (2013)
Kang S, Kim S, Lee J, Korean J. Chem. Eng., 32(7), 1377 (2015)
Park JN, Ali-Nehari A, Woo HC, Chun BS, Korean J. Chem. Eng., 29(11), 1604 (2012)
Chon SU, Kim DK, Kim YM, Korean J. Plant Resour., 26, 159 (2013)
Milutinovic M, Radovanovic N, Corovic M, Siler-Marinkovic S, Rajilic-Stojanovic M, Dimitrijevic-Brankovic S, Ind. Crop. Prod., 77, 333 (2015)
Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
Jung JK, Jung BR, Shin BY, Bang MA, Plant Resour. Soc. Korea., 5, 148 (2013)
Kim YS, Kim R, Moon JH, Ji JR, Choi HD, Park YK, Korean J. Food SCI. Technol., 41, 245 (2009)
Lee DW, Lee SY, Chung HS, Choi YH, Im DS, Lee YG, J. Life Sci., 23, 1360 (2013)
Goiris K, Muylaert K, Fracye I, Foubert I, Brabanter J, Cooman L, J. Appl. Phycol., 24, 1477 (2012)
Sindhu R, Binod P, Pandey A, Bioresour. Technol., 199, 76 (2016)
Ryu YJ, Seong DH, Lim SM, Lee CG, Korean Soc. New Renewable Energy, 5, 96 (2013)
Kang S, Kim S, Lee J, Korean J. Chem. Eng., 32(7), 1377 (2015)
Park JN, Ali-Nehari A, Woo HC, Chun BS, Korean J. Chem. Eng., 29(11), 1604 (2012)
Chon SU, Kim DK, Kim YM, Korean J. Plant Resour., 26, 159 (2013)
Milutinovic M, Radovanovic N, Corovic M, Siler-Marinkovic S, Rajilic-Stojanovic M, Dimitrijevic-Brankovic S, Ind. Crop. Prod., 77, 333 (2015)
Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
Jung JK, Jung BR, Shin BY, Bang MA, Plant Resour. Soc. Korea., 5, 148 (2013)
Kim YS, Kim R, Moon JH, Ji JR, Choi HD, Park YK, Korean J. Food SCI. Technol., 41, 245 (2009)
Lee DW, Lee SY, Chung HS, Choi YH, Im DS, Lee YG, J. Life Sci., 23, 1360 (2013)
Goiris K, Muylaert K, Fracye I, Foubert I, Brabanter J, Cooman L, J. Appl. Phycol., 24, 1477 (2012)

