Issue
Korean Journal of Chemical Engineering,
Vol.29, No.6, 707-715, 2012
Numerical simulation of CO2 absorption into aqueous methyldiethanolamine solutions
The CO2 absorption rate into aqueous N-methyldiethanolamine solutions was measured using a stirred cell with a flat gas-liquid interface. The measurements were performed in the temperature range of 293.15 to 333.15 K for various amine concentrations and CO2 partial pressures. A numerical model of mass-transfer with complex chemical reactions based on the film theory was developed to interpret the experimental results. The model predictions have been found to be in good agreement with the experimental values of CO2 absorption rates. A comparison is made between the enhancement factor predicted from the detailed model and the approximate solution of mass transfer equations with chemical reaction. The numerical results indicate that under the present experimental conditions, the effect of the reaction between CO2 and OH. on the observed mass transfer rates is negligible. The detailed mass transfer model was used for simulating the CO2 absorption process in terms of the enhancement factor under a variety of operating conditions.
[References]
  1. Kohl AL, Nielsen RB, Gas Purification (5th Ed.), Gulf Publishing Co., Houston, 1997
  2. Notz R, Tonnies I, McCann N, Scheffknecht G, Hasse H, Chem. Eng. Technol., 34(2), 163, 2011
  3. Notz R, Asprion N, Clausen I, Hasse H, Chem. Eng. Res. Des., 85(A4), 510, 2007
  4. Haimour N, Bidarian A, Sandall O, Chem. Eng. Sci., 42, 1393, 1987
  5. Littel RJ, Van Swaaij WPM, Versteeg GF, AIChE J., 36(11), 1633, 1990
  6. Tomsej RA, Otto FD, Chem. Eng. Sci., AIChE J., 35(5), 573, 1989
  7. Pani F, Gaunand A, Cadours R, Bouallou C, Richon D, J. Chem. Eng. Data, 42(2), 353, 1997
  8. Ko JJ, Li MH, Chem. Eng. Sci., 55(19), 4139, 2000
  9. Moniuk W, Pohorecki R, In ynieria Chemiczna i Procesowa., 21(1), 183, 2000
  10. Jamal A, Meisen A, Lim CJ, Chem. Eng. Sci., 61(19), 6571, 2006
  11. Jamal A, Meisen A, Lim CJ, Chem. Eng. Sci., 61(19), 6590, 2006
  12. Benamor A, Aroua MK, Korean J. Chem. Eng., 24(1), 16, 2007
  13. Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467, 2007
  14. Donaldson TL, Nguyen YN, Ind. Eng. Chem. Fundam., 19, 260, 1980
  15. Glasscock DA, Rochelle GT, AIChE J., 35, 1271, 1989
  16. Rinker EB, Ashour SS, Sandall OC, Chem. Eng. Sci., 50(5), 755, 1995
  17. Cadours R, Bouallou C, Ind. Eng. Chem. Res., 37(3), 1063, 1998
  18. Kabouche A, Meniai AH, Bencheikh-Lehocine M, Chem. Eng. Technol., 28(1), 67, 2005
  19. Marguardt DW, J. Soc. Indust. Appl. Math., 11, 431, 1963
  20. Zarzycki R, Chacuk A, Absorption: Fundamentals and applications, Pergamon Press, Oxford, 1993
  21. Kierzkowska-Pawlak H, Chacuk A, Chem. Eng. J., 168(1), 367, 2011
  22. Versteeg GF, Van Swaaij WPM, J. Chem. Eng. Data., 33(1), 29, 1988
  23. Al-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC, J. Chem. Eng. Data., 34(4), 385, 1989
  24. Cadours R, Bouallou C, Gaunand A, Richon D, Ind. Eng. Chem. Res., 36(12), 5384, 1997
  25. Pinsent RW, Pearson L, Roughton FJW, Trans. Faraday Soc., 52, 1512, 1956