Issue
Korean Journal of Chemical Engineering,
Vol.29, No.4, 525-528, 2012
Low-temperature growth of highly conductive and transparent aluminum-doped ZnO film by ultrasonic-mist deposition
Aluminum-doped ZnO (AZO) thin films are grown by ultrasonic-mist deposition method for the transparent conducting oxides (TCO) applications at low temperatures. The AZO films can be grown at a temperature as low as 200 ℃ with zinc acetylacetonate and aluminum acetylacetonate sources. The lowest resistivity of grown AZO films is 1.0×10^(-3) Ω·cm and the lowest sheet resistance of 1 μm thick films is 10 Ω/□, which is close to that of commercial indium tin oxide (ITO) or Asahi U-type SnO2 : F glass. The highest carrier concentration and mobility are 5.6×1020cm^(-3) and 15 cm2/V·sec, respectively. Optical transmittance of the AZO films is found over 75% for all growth conditions. We believe that the properties of grown AZO films in this study are the best among all reported previously elsewhere by solution processes.
[References]
  1. Kelly PJ, Zhou Y, J. Vac. Sci. Technol. A, 24(5), 1782, 2006
  2. Park SM, Ikegami T, Ebihara K, Jpn. J. Appl. Phys., 44(11), 8027, 2005
  3. Sato H, Minami T, Miyata T, Takata S, Ishii M, Thin Solid Films, 246(1-2), 65, 1994
  4. Mrida S, Basak D, J. Phys. D: Appl. Phys., 40, 6902, 2007
  5. Tsang WM, Wong FL, Fung MK, Chang JC, Lee CS, Lee ST, Thin Solid Films., 517, 891, 2008
  6. Nayak PK, Yang J, Kim J, Chung S, Jeong J, Lee C, Hong Y, J. Phys. D: Appl. Phys., 42, 035102, 2009
  7. Yousfi EB, Weinberger B, Donsanti F, Cowache P, Lincot D, Thin Solid Films, 387(1-2), 29, 2001
  8. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA, Appl. Surf. Sci., 252(22), 7844, 2006
  9. Rozati SM, Akesteh S, Mater. Charact., 58, 319, 2007
  10. Wienke J, Booij AS, Thin Solid Films., 516, 4508, 2008
  11. Olvera ML, Gomez H, Maldonado A, Sol. Energy Mater. Sol. Cells., 91, 1449, 2007
  12. Kaid MA, Ashour A, Appl. Surf. Sci., 253(6), 3029, 2007
  13. Lucio-Lopez MA, Luna-Arias MA, Maldonado A, Olvera ML, Acosta DR, Sol. Energy Mater. Sol. Cells., 90, 733, 2006
  14. Caglar M, Ilican S, Caglar Y, Yakuphanoglu F, J. Mater. Sci.: Mater. Electron., 19, 704, 2008
  15. Lee JH, Park BO, Mater. Sci. Eng. B., 106, 242, 2004
  16. MaTY, Lee SC, J. Mater. Sci.: Mater. Electron., 11, 305, 2000
  17. Lu JG, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Fujita S, J. Cryst. Growth, 299(1), 1, 2007
  18. Nishinaka H, Kawaharamura T, Fujita S, Jpn. J. Appl. Phys., 46(10A), 6811, 2007
  19. Maruyama T, Shionaoya J, J. Mater. Sci. Lett., 11, 170, 1992
  20. Kim H, Gilmore CM, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafai ZH, Chrisey DB, J. Appl. Phys., 86, 6451, 1999
  21. Jayaraj MK, Antony A, Ramachandram M, Bull. Mater. Sci., 25(3), 227, 2002
  22. Roth AP, Webb JB, Williams DF, Phys. Rev., B25, 7836, 1982
  23. Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist C, Phys. Rev., B37, 10244, 1988
  24. Sato K, Gotoh Y, Wakayama Y, Hayashi Y, Adachi K, Nishimura H, Reports of the Research Labs ; Asahi Glass Co. Ltd., 42, 129, 1992