Issue
Korean Journal of Chemical Engineering,
Vol.16, No.5, 608-613, 1999
Effect of the Fluorine-Addition Order on the Hydrodesulfurization Activity of Fluorinated NiW/Al2O3 Catalysts
Fluorinated NiW/Al2O3 catalysts with different orders of fluorine addition have been prepared, tested for hydrodesulfurization (HDS) of thiophene, and characterized using nitric oxide chemisorption and temperature-programmed sulfidation. The catalyst surface area has been affected by fluorine addition but not by the order of fluorination. The fluorine addition-order does not affect the amount of fluorine retained in the catalysts after the calcination and the reaction steps, either. On the other hand, the order of fluorine addition changes the dispersion of the nickel and the tungsten species, incorporation of nickel with the tungsten edge sites, and consequently the HDS activity of the catalysts. The catalyst fluorinated in the last step, i.e., after addition of both tungsten and nickel, shows the highest activity in thiophene HDS, which is supported by other experimental results indicating the most nitric oxide chemisorption and the largest incorporation of nickel with the tungsten species. Accordingly, enhancement of the catalyst activity by fluorination is due to the repartition of the metal species rather than to partial solubilization of alumina in the fluorine-addition step.
[References]
  1. Benitez A, Ramirez J, Fierro JL, Agudo AL, Appl. Catal. A: Gen., 144(1-2), 343, 1996
  2. Fierro JLG, Cuevas R, Ramirez J, Agudo AL, Bull. Soc. Chim. Belg., 100, 945, 1991
  3. Jiratova K, Kraus M, Appl. Catal., 27, 21, 1986
  4. Kwak C, "Study on the Characteristics of the Fluorine Added Ni-W/Al2O3 Catalysts," M.S. Thesis, Seoul National University, 1995
  5. Kwak C, Kim MY, Song CJ, Moon SH, Stud. Surf. Sci. Catal., 121, 283, 1999
  6. Le Page JF, "Applied Heterogeneous Catalysis," Technip, Paris, 1987
  7. Lewis JM, Kydd RA, Boorman PM, J. Catal., 120, 413, 1989
  8. Matralis HK, Lycourghiotis A, Grange P, Delmon B, Appl. Catal., 38, 273, 1988
  9. Matralis H, Papadopoulou C, Lycourghiotis A, Appl. Catal. A: Gen., 116(1-2), 221, 1994
  10. Muralidhar G, Massoth FE, Shabtai J, J. Catal., 85, 44, 1984
  11. Okamoto Y, Katoh Y, Mori Y, Imanaka T, Teranishi S, J. Catal., 70, 445, 1981
  12. Papadopoulou Ch, Lycourghiotis A, Grange A, Delmon B, Appl. Catal., 38, 255, 1988
  13. Portela L, Grange P, Delmon B, Catal. Rev.-Sci. Eng., 37(4), 699, 1995
  14. Ramirez J, Cuevas R, Agudo AL, Mendioroz S, Fierro JLG, Appl. Catal., 57, 223, 1990
  15. Salvati L, Macovsky LE, Stencel JM, Brown FR, Hercules DM, J. Phys. Chem., 85, 3700, 1985
  16. Sarbak Z, Appl. Catal. A: Gen., 164(1-2), 13, 1997
  17. Scheffer B, Mangnus PJ, Moulijn JA, J. Catal., 121, 18, 1990
  18. Scokart PO, Selim SA, Damon JP, Rouxhet PG, J. Colloid Interface Sci., 70, 209, 1979
  19. Spanos N, Vordonis L, Kordulis Ch, Lycourghiotis A, J. Catal., 124, 301, 1990
  20. Topsoe NY, Topsoe H, J. Catal., 84, 386, 1983
  21. Van Veen JAR, Wit H, Emeis CA, Hendricks PAJM, J. Catal., 107, 579, 1987
  22. Vordonis L, Spanos N, Koutsoukos PG, Lycourghiotis A, Langmuir, 8, 1736, 1992
  23. Weisser O, Landa S, "Sulphide Catalysts: Their Properties and Applications," Frider. Vieweg and Sohn, Braunschweig, 1973