Issue
Korean Journal of Chemical Engineering,
Vol.25, No.6, 1539-1545, 2008
Effects of silyl concentration, hydrogen concentration, ion flux, and silyl surface diffusion length on microcrystalline silicon film growth
Two sets of μc-Si : H films as a function of pressure were fabricated by very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Deposition rate, Raman crystallinity, and photo/dark conductivity were investigated under both low and high power conditions. A plasma fluid model and a surface hydride-dependent precursor diffusion model were constructed to understand the evolution of microcrystalline silicon under low and high power conditions. Silyl, hydrogen, ion flux, silyl surface diffusion length are believed to have much influence on film growth rate, crystallinity and photo electronic properties. But the interesting point is that under a certain condition one or more of these parameters dominate μc-Si : H growth, while other parameters have weak influence. Short-life radicals are found to be the possible major factor on the deterioration of photo sensitivity of μc-Si : H films.
[References]
  1. Matsuda A, Takai M, Nishimoto T, Kondo M, Sol. Energy Mater. Sol. Cells, 78, 3, 2003
  2. Takai M, Nishimoto T, Kondo M, Matsuda A, Appl. Phys. Lett., 77, 2828, 2000
  3. Kim SK, Stassions EC, Lee HH, Korean J. Chem. Eng., 11(2), 67, 1994
  4. Kim DH, Lee IJ, Rhee SW, Moon SH, Korean J. Chem. Eng., 15, 572, 1995
  5. Bera K, Farouk B, Lee YH, J. Electrochem. Soc., 146(9), 3264, 1999
  6. Dagel DJ, Mallouris CM, Doyle JR, J. Appl. Phys., 79, 8735, 1996
  7. Tachibana K, Nishida M, Harima H, Urano Y, J. Phys. D: Appl. Phys., 17, 1727, 1984
  8. Herrebout D, Bogaerts A, Yan M, Gijbels R, et al., J. Appl. Phys., 90, 570, 2001
  9. Herrebout D, Bogaerts A, Gijbels R, et al., IEEE Trans. Plasma Sci., 31, 659, 2003
  10. Gupta A, Doctor Thesis, 11, (2001)
  11. Yang HD, Wu CY, Huang J, Ding RQ, Zhao Y, Geng XH, Xiong SZ, Thin Solid Films, 472(1-2), 125, 2005
  12. Hahn YB, Pearton SJ, Korean J. Chem. Eng., 17(3), 304, 2000
  13. Faundez CA, Tamblay LE, Valderrama JO, Korean J. Chem. Eng., 21(6), 1199, 2004
  14. Kim DJ, Lyoo PJ, Kim KS, Korean J. Chem. Eng., 20(2), 392, 2003
  15. Kim DJ, Kang JY, Nasonova A, Kim KS, Choi SJ, Korean J. Chem. Eng., 24(1), 154, 2007
  16. Nienhuis GJ, Goedheer WJ, Hamers EAG, et al., J. Appl. Phys., 82, 2060, 1997
  17. Kurachi M, Nakamura Y, J. Phys. D, 22, 107, 1989
  18. Perrin J, Schmitt JPM, De Rosny G, et al., Chem. Phys., 73, 383, 1982
  19. Krishnakumar E, Srivastava SK, Contrib. Plasma Phys., 35, 395, 1995
  20. Haaland P, J. Chem. Phys., 93, 4066, 1990
  21. Tawara H, Kato T, At. Data Nucl. Data Tables, 36, 167, 1987
  22. Engelhardt AG, Phelps AV, Phys. Rev., 131, 2115, 1963
  23. Perrin J, Leroy O, Bordage MC, Contrib. Plasma Phys., 36, 3, 1996
  24. Hickman AP, J. Chem. Phys., 70, 4872, 1979
  25. Ganguly G, Matsuda A, Phys. Rev. B, 47, 3661, 1993
  26. Matsuda A, Thin Solid Films, 337(1-2), 1, 1999
  27. Guizot JL, Nomoto K, Matsuda A, Surface Science, 244, 22, 1991
  28. Maeda K, Kuroe A, Umezu I, Phys. Rev. B, 51, 10635, 1995
  29. Gerbi JE, Abelson JR, J. Appl. Phys., 89, 1463, 2001
  30. Gallagher A, J. Appl. Phys., 60, 1369, 1986
  31. Perrin J, J. Non-Cryst. Solids, 137, 639, 1991
  32. Ganguly G, Matsuda A, J. Non-Cryst. Solids, 166, 31, 1993
  33. Bray KR, Parsons GN, Phys. Rev. B, 65, 035311, 2001
  34. Gupta A, Parsons GN, J. Vac. Sci. Technol. B, 18(3), 1764, 2000
  35. Kessels WMM, Smets AHM, Marra DC, Aydil ES, Schram DC, van de Sanden MCM, Thin Solid Films, 383(1-2), 154, 2001
  36. Doren DJ, Advances in chemical physics, John Wiley & Sons Inc, New York (1996)
  37. Heintze M, Zedlitz R, Bauer GH, J. Phys. D: Appl. Phys., 26, 1781, 1993
  38. Robertson J, J. Appl. Phys., 87, 2608, 2000
  39. Heintze M, Zedlitz R, J. of Non-cryst. Solids, 198-200, 1038 (1996)