Issue
Korean Journal of Chemical Engineering,
Vol.23, No.4, 678-682, 2006
Fabrication of high aspect ratio nanostructures using capillary force lithography
A new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.) has recently been introduced as an alternative to replace polydimethylsiloxane (PDMS) mold for sub-100-nm lithography. Here, we demonstrate that this mold allows for fabrication of various high aspect ratio nanostructures with an aspect ratio as high as 4.4 for 80 nm nanopillars. For the patterning method, we used capillary force lithography (CFL) involving direct placement of a polyurethane acrylate mold onto a spin-coated polymer film followed by raising the temperature above the glass transition temperature of the polymer (Tg). For the patterning materials, thermoplastic resins such as polystyrene (PS) and poly(methyl methacrylate) (PMMA) and a zinc oxide (ZnO) precursor were used. For the polymer, micro/nanoscale hierarchical structures were fabricated by using sequential application of the same method, which is potentially useful for mimicking functional surfaces such as lotus leaf.
[References]
  1. Ball P, Nature, 400, 507, 1999
  2. Bietsch A, Michel B, J. Appl. Phys., 88, 4310, 2000
  3. Brandup J, Immergut EH, Polymer Handbook, Wiley, New York, 1989
  4. Cheng JY, Ross CA, Chan VZH, Thomas EL, Lammertink RGH, Vancso GJ, Adv. Mater., 13, 1174, 2001
  5. Choi KM, Rogers JA, J. Am. Chem. Soc., 125(14), 4060, 2003
  6. Choi SJ, Yoo PJ, Baek SJ, Kim TW, Lee HH, J. Am. Chem. Soc., 126(25), 7744, 2004
  7. Chou SY, Krauss PR, Renstrom PJ, Science, 272(5258), 85, 1996
  8. Choy JH, Jang ES, Won JH, Chung JH, Jang DJ, Kim YW, Adv. Mater., 15, 1911, 2003
  9. Csucs G, Kunzler T, Feldman K, Robin F, Spencer ND, Langmuir, 19(15), 6104, 2003
  10. Delamarche E, Schmid H, Michel B, Biebuyck H, Adv. Mater., 9, 741, 1997
  11. Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB, Adv. Mater., 14, 1857, 2002
  12. Haes AJ, Van Duyne RP, J. Am. Chem. Soc., 124(35), 10596, 2002
  13. Hehn M, Ounadjela K, Bucher JP, Rousseaux F, Decanini D, Bartenlian B, Chappert C, Science, 272(5269), 1782, 1996
  14. Khang DY, Kang H, Kim T, Lee HH, Nano Lett., 4, 633, 2004
  15. Khang DY, Lee HH, Adv. Mater., 16, 176, 2004
  16. Kim YS, Lee HH, Hammond PT, Nanotechnology, 14, 1140, 2003
  17. Kim YS, Suh KY, Lee HH, Appl. Phys. Lett., 79, 2285, 2001
  18. Krauss PR, Chou SY, Appl. Phys. Lett., 71, 3174, 1997
  19. Lee KB, Kim DJ, Yoon KR, Kim Y, Choi IS, Korean J. Chem. Eng., 20(5), 956, 2003
  20. Lee KB, Park S, Mirkin CA, Smith JC, Mrksich M, Science, 295, 1702, 2002
  21. Neinhuis C, Barthlott W, Ann. Bot., 79, 667, 1997
  22. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM, Langmuir, 18(13), 5314, 2002
  23. Poborchii VV, Tada T, Kanayama T, Appl. Phys. Lett., 75, 3276, 1999
  24. Schmid H, Michel B, Macromolecules, 33(8), 3042, 2000
  25. Seo SM, Park JY, Lee HH, Appl. Phys. Lett., 86(13), 2005
  26. Suh KY, Kim YS, Lee HH, Adv. Mater., 13, 1386, 2001
  27. Suh KY, Langer R, Lahann J, Appl. Phys. Lett., 83, 4250, 2003
  28. Suh KY, Lee HH, Adv. Funct. Mater., 12, 405, 2002
  29. Wanke MC, Lehmann O, Muller K, Wen QZ, Stuke M, Science, 275(5304), 1284, 1997
  30. Wu S, Polymer Interface and Adhesion, Dekker, New York, 1982
  31. Xia YN, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153, 1998
  32. Yang SM, Ozin GA, Chem. Commun., 24, 2507, 2000