Issue
Korean Journal of Chemical Engineering,
Vol.21, No.6, 1256-1259, 2004
Fourier Transform Infrared Spectroscopy Studies on Thermal Decomposition of Tetrakis-dimethyl-amido Zirconium for Chemical Vapor Deposition of ZrN
The decomposition behavior of tetrakis (dimethylamido) zirconium (TDMAZ) under various ambient gases was studied by using in-situ Fourier transform infrared spectroscopy (FTIR) aimed at understanding the gas phase reactions and also at selecting the appropriate process conditions for ZrN chemical vapor deposition (CVD). The infrared absorbance of the stretching vibration at 933.37 cm-1 was employed to monitor the degree of dissociation of the gaseous TDMAZ. In the case of argon and nitrogen atmospheres, TDMAZ starts to decompose at above 300 ℃, while in a hydrogen atmosphere it starts to decompose at above 350 ℃. To evaluate the effect of the decomposition behavior of the precursor on CVD ZrN, the ZrN films were grown at 150-375 ℃ under Ar, N2, and H2. A clear difference in transition temperature of controlling from surface reaction to gas phase mass transfer was observed: The ZrN growth rate decreased rapidly at above 300 ℃ under Ar or N2 atmospheres, and increased continuously with increase of the deposition temperature under an H2 atmosphere.
[References]
  1. Berndt H, Zeng AQ, Stock HR, Mayr P, Surf. Coat. Technol., 74, 369, 1995
  2. Chou WJ, Sun CH, Yu GP, Huang JH, Mater. Chem. Phys., 82, 228, 2003
  3. Dauchot JP, Gouttebaron R, Cornelissen D, Wautelet M, Hecq M, Surf. Interface Anal., 30, 607, 2000
  4. Dobois LH, Zegarski BR, Girolami GS, J. Electrochem. Soc., 139, 3603, 1992
  5. Fix RM, Gordon RG, Hoffman DM, J. Am. Chem. Soc., 112, 7833, 1991
  6. Hoffman DM, Polyhedron, 13, 1169, 1994
  7. Jin S, Wen XY, Gong ZX, Zhu YC, J. Appl. Phys., 74, 2886, 1993
  8. Kim DH, Lim GT, Kim SK, Park JW, Lee JG, J. Vac. Sci. Technol. B, 17(5), 2197, 1999
  9. Krusin-Elbaum L, Wittmer M, Thin Solid Films, 107, 111, 1983
  10. Motojima S, Kani E, Takahashi Y, Sugiyama K, J. Mater. Sci., 14, 1495, 1979
  11. Murarka SP, "Metallization," Butterworth-Heinemann, Stoneham, 15, 1993
  12. Ostling M, Nygren S, Petersson CS, Norstrom H, Wiklund P, Buchta R, Blom HO, Berg S, J. Vac. Sci. Technol. A, 2, 281, 1984
  13. Puclin T, Kaczmarek WA, J. Mater. Sci. Lett., 16, 1799, 1996
  14. Spillmann H, Willmott PR, Morstein MP, Appl. Phys. A-Mater. Sci. Process., 73, 441, 2001
  15. Sproul WD, J. Vac. Sci. Technol. A, 4, 2874, 1986
  16. Sugiyama K, Pac S, Takahashi Y, Motojima S, J. Electrochem. Soc., 122, 1545, 1975
  17. Vobdervis MGM, Konings RJM, Oskam A, Walter R, J. Mol. Struct., 93, 323, 1994
  18. Weiller BH, J. Am. Chem. Soc., 118(21), 4975, 1996
  19. Wendel H, Surh H, Appl. Phys. A-Mater. Sci. Process., 54, 389, 1992
  20. Yong K, Jeong J, Korean J. Chem. Eng., 19(3), 451, 2002
  21. Yun JY, Park MY, Rhee SW, J. Electrochem. Soc., 145(7), 2453, 1998
  22. Yun JY, Rhee SW, Thin Solid Films, 320(2), 163, 1998
  23. Yun JY, Rhee SW, Korean J. Chem. Eng., 13(5), 510, 1996