Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1793-1800, 2017
A new process of acidic hydrolysis of residual chlorosilane liquid for the preparation of silica and hydrochloric acid
We propose a novel process for the preparation of silica and concentrated hydrochloric acid using chlorosilane residual liquid originating from the polysilicon production process. The process was designed and optimized after conducting pilot plant tests. The effects of circulating acid concentration, flow rate, chlorosilane residual liquid treatment load and other factors on silica products were studied. The results showed that the circulating acid flowrate can effectively control the formation of gel, and the amount of chlorosilane residual liquid has significant influence on the hydrolysis efficiency and operation of the hydrolysis tower. The prepared silica was characterized using XRD, XRF, FTIR, SEM, DLS, TG-MS and N2 adsorption/desorption experiments. The results indicated that silica consisted of amorphous particles, which were spherical, had surface hydroxyl, and showed heterogeneous distribution. The average particle size was 50-80 μm and had high specific surface area (565.049m2g-1), large pore volume (0.449 cm3g-1), and a narrow pore size distribution (3.419 nm). The new technology provides a simple, efficient and environmentally friendly way for treating chlorosilane residual liquid, as well as a cost-effective method for the preparation of silica.
[References]
  1. Alivisatos AP, J. Phys. Chem., 100(31), 13226, 1996
  2. Yu WW, Falkner JC, Shih BS, Colvin VL, Chem. Mater., 16, 3318, 2004
  3. Su M, Korean J. Chem. Eng., 34(2), 484, 2017
  4. Pihan E, Slaoui A, Cabarrocas PRI, Focsa A, Thin Solid Films, 451, 328, 2004
  5. Ding Y, Yamada R, Gresback R, Zhou S, Pi XD, Nozaki T, J. Phys. D-Appl. Phys., 47, 9, 2014
  6. Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L, Nanotechnology, 23, 10, 2012
  7. Zhang J, Chen S, Zhang H, Zhang S, Yao X, Shi Z, RSC Adv., 6, 12061, 2016
  8. Carbonaro CM, Corpino R, Ricci PC, Salis M, Anedda A, J. Mater. Sci., 48(12), 4452, 2013
  9. Chen C, You KS, Ahn JW, Ahn WS, Korean J. Chem. Eng., 27(3), 1010, 2010
  10. Gribov BG, Zinov'ev KV, Inorg. Mater., 39, 653, 2003
  11. Chen XZ, Shi DP, Gao X, Luo ZH, Powder Technol., 205(1-3), 276, 2011
  12. Robert E, Zijlema T, US Patent, 7,943,109 (2011).
  13. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR, Sol. Energy Mater. Sol. Cells, 92(4), 418, 2008
  14. Lynch D, Jom, 61, 41, 2009
  15. Kirii S, Narukawa M, Takesue H, US Patent, 6,846,473 (2005).
  16. Masuda N, Tachino N, US Patent, 8,197,783 (2012).
  17. Breneman WC, EP Patent, 1622831 A1 (2006).
  18. Fabry L, Paetzold U, Stepp M, US Patent, 8,557,210 (2013).
  19. Hesse K, Schreieder F, US Patent, 7708970 B2 (2010).
  20. Naumann K, Zon G, Mislow K, J. Am. Chem. Soc., 91, 7012, 2002
  21. Nelson WM, Naidoo P, Ramjugernath D, J. Chem. Thermodyn., 91, 420, 2015
  22. Szabo G, Szieberth D, Nyulaszi L, Struct. Chem., 26, 231, 2015
  23. Ruff K, US Patent, 5,080,804 (1992).
  24. Burgie RA, Heng OA, US Patent, 5,118,486 (1992).
  25. Ferron S, Kelly J, Vermeulen R, US Patent, 7569193 B2 (2009).
  26. Michael LS, US Patent, 7,736,614 (2010).
  27. Breneman WC, Reeser DM, US Patent, 4,690,810 (1987).
  28. Herman JE, US Patent, 6,090,360 (2000).
  29. Coleman LM, Tambo W, US Patent, 4519999 A (1985).
  30. Zhang XL, Fan YL, J. Non-Cryst. Solids, 358, 337, 2012
  31. Pinto PR, Mendes LC, Dias ML, Azuma C, Colloid Polym. Sci., 284, 529, 2006
  32. Fidalgo A, Ciriminna R, Ilharco LM. Pagliaro M, Chem. Mater., 17, 6686, 2005
  33. Pijarn N, Jaroenworaluck A, Sunsaneeyametha W, Stevens R, Powder Technol., 203(3), 462, 2010
  34. Uchino T, Aboshi A, Kohara S, Ohishi Y, Sakashita M, Aoki K, Phys. Rev. B, 69, 2004
  35. Lee S, Ha KR, Korean J. Chem. Eng., 33(8), 2469, 2016
  36. Yan F, Jiang JG, Tian SC, Liu ZW, Shi J, Li KM, Chen XJ, Xu YW, Acs Sustain. Chem. Eng., 4, 4654, 2016
  37. Cerveny S, Schwartz GA, Otegui J, Colmenero J, Loichen J, Westermann S, J. Phys. Chem. C, 116, 24340, 2012
  38. Su M, Su H, Du B, Li X, Ren G, Wang S, Korean J. Chem. Eng., 32(5), 852, 2015
  39. Adam F, Kandasamy K, Balakrishnan S, J. Colloid Interface Sci., 304(1), 137, 2006
  40. Kim JM, Chang SM, Kong SM, Kim KS, Kim J, Kim WS, Ceram. Int., 35, 1015, 2009
  41. Ek S, Root A, Peussa M, Niinisto L, Thermochim. Acta, 379(1-2), 201, 2001
  42. Chen XJ, Jiang JG, Yan F, Tian SC, Li KM, RSC Adv., 4, 8703, 2014
  43. Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK, Colloids Surf. A: Physicochem. Eng. Asp., 240, 173, 2004