Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1619-1629, 2017
Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application
We developed a modified process of a submerged combustion vaporizer (SMV) to remove nitric oxides (NOx) efficiently from flue gas of the SMV at liquefied natural gas (LNG) terminals. For this, excess oxygen is injected into exhaust gas that contains NOx from SMV burner. Then, the mixed gas spreads into a hydrogen peroxide solution or water bath. We initially performed experiments of the modified system to estimate the effect of various process variables (temperature, excess O2 concentration, pH of water, residence time of flue gas in water tank, and H2O2 concentration) on NOx conversion, and developed a mathematical model of the system based on the experiment results. Lastly, we confirmed higher performance of the modified system and validated the feasibility for its field application.
[References]
  1. NIER, National Air Pollutants Emission 2012, 11-1480523-002293- 01, Ministry of Environment, Korea (2012).
  2. Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y, Korean J. Chem. Eng., 33(11), 3102, 2016
  3. Egashira S, Kobelco Technol. Rev., 32, 64, 2013
  4. Lee K, Appl. Chem. Eng., 21(3), 243, 2010
  5. Morrison ME, Rinker RE, Corcoran WH, Ind. Eng. Chem. Fundam., 5, 175, 1966
  6. Tsukahara H, Ishida T, Mayumi M, Nitric Oxide, 3, 191, 1999
  7. Bodenstein M, Wachenheim L, Z. Elektrochem., 24, 183, 1918
  8. Tipper CFH, Williams RK, Trans. Faraday Soc., 57, 79, 1961
  9. Treacy JC, Daniels F, J. Am. Chem. Soc., 77, 2033, 1955
  10. Mahenc J, Clot G, Bes R, Bull. Soc. Chim. Fr., 5, 1578, 1971
  11. Hisatsune IC, Zafonte L, J. Phys. Chem., 73, 2980, 1969
  12. Olbregts J, Int. J. Chem. Kinet., 17, 835, 1985
  13. Smith JH, J. Am. Chem. Soc., 65, 74, 1943
  14. Cueto R, Pryor WA, Vib. Spectrosc., 7, 97, 1994
  15. Brown FB, Crist RH, J. Chem. Phys., 9, 840, 1941
  16. Greig JD, Hall PG, Trans. Faraday. Soc., 63, 655, 1967
  17. Greig JD, Hall PG, Trans. Faraday. Soc., 62, 652, 1966
  18. Aida A, Miyamoto K, Saito S, Nakano T, Nishimura M, Kawakami Y, Omori Y, Ando S, Ichida T, Ishibe Y, Nihon Kyobu Shikkan Gakkai Zasshi, 33, 306, 1995
  19. Stedman DH, Niki H, J. Phys. Chem., 77, 2604, 1973
  20. Bufalini JJ, Stephens ER, Int. J. Air Water. Poll., 9, 123, 1965
  21. Glasson WA, Tuesday CS, J. Am. Chem. Soc., 85, 2901, 1963
  22. Pogrebnaya VL, Usov AP, Baranov AV, Nesterenko AI, Bez’yazychnyi PI, Zh. Prikl. Khim., 48, 954, 1975
  23. Lewis RS, Deen WM, Chem. Res. Toxicol., 7, 568, 1994
  24. Wink DA, Darbyshire JF, Nims RW, Saavedra JE, Ford PC, Chem. Res. Toxicol., 6, 23, 1993
  25. Awad HH, Stanbury DM, Int. J. Chem. Kinet., 25, 375, 1993
  26. Long XL, Xin ZL, Chen MB, Li W, Xiao WD, Yuan WK, Sep. Purif. Technol., 58(3), 328, 2008
  27. Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., 135(1-3), 412, 2006
  28. Kasper JM, Clausen CA, Cooper CD, J. Air Waste Manage. Assoc., 46, 127, 1996
  29. Bhanarkar AD, Gupta RK, Biniwale RB, Tamhane SM, Int. J. Environ. Sci. Technol., 11, 1537, 2014
  30. Thomas D, Vanderschuren J, Ind. Eng. Chem. Res., 36(8), 3315, 1997
  31. Thomas D, Vanderschuren J, Sep. Purif. Technol., 18, 37, 1999
  32. Schwartz SE, White WH, Adv. Environ. Sci. Eng., 4, 1, 1981
  33. Park S, Lee Y, Kim G, Hwang S, Korean J. Chem. Eng., 33(12), 3417, 2016
  34. Kuropka J, Environ. Prot. Eng., 37, 13, 2011
  35. Pires M, Rossi MJ, Ross DS, Int. J. Chem. Kinet., 26, 1207, 1994
  36. Baveja KK, Rao DS, Sarkar MK, J. Chem. Eng. Jpn., 12, 322, 1979
  37. Thomas D, Vanderschuren J, Chem. Eng. Sci., 51(11), 2649, 1996
  38. Wang TF, Wang JF, Chem. Eng. Sci., 62(24), 7107, 2007
  39. Lee H, Lee S, Hwang S, Jin D, Korean Chem. Eng. Res., 54(3), 340, 2016