Issue
Korean Journal of Chemical Engineering,
Vol.33, No.5, 1534-1550, 2016
Heat transfer and fluid flow modeling in serpentine microtubes using adaptive neuro-fuzzy approach
An adaptive neuro-fuzzy inference system (ANFIS) is applied to predict thermal and flow characteristics in serpentine microtubes. Heat transfer rate and pressure drop were experimentally measured for six serpentine microtubes with different geometrical parameters. Thermal and flow characteristics were obtained in various flow conditions. The ANFIS models were trained using the experimental data to predict Nusselt number (Nu) and friction factor (f) in the studied serpentine microtubes as a function of geometric parameters and flow conditions. The model was validated through testing data set, which were not previously introduced to the developed ANFIS. For Nu prediction, the root mean square error (RMSE), mean relative error (MRE), and absolute fraction of variance (R2) between the predicted results and experimental data were found 0.2058, 1.74%, and 0.9987, respectively. The corresponding calculated values for f were 0.0056, 2.98%, and 0.9981, respectively. The prediction accuracy of the ANFIS models was compared with that of corresponding classical power-law correlations and its advantages are illustrated.
[References]
  1. Mala GM, Li DQ, Dale JD, Int. J. Heat Mass Transf., 40(13), 3079, 1997
  2. Kumar MR, Dasgupta S, Chem. Eng. Commun., 160, 225, 1997
  3. Dehghan M, Daneshipour M, Valipour MS, Rafee R, Saedodin S, Energy Conv. Manag., 92, 244, 2015
  4. Shojaeian M, Shojaee SMN, Korean J. Chem. Eng., 30(4), 823, 2013
  5. Choi SB, Barron RF, Warrington RO, Actuators, and Systems, ASME DSC, 32, 123, 1991
  6. Hong C, Asako Y, Appl. Therm. Eng., 28, 1375, 2008
  7. Xiong RQ, Chung JN, Int. J. Heat Mass Transf., 53(15-16), 3284, 2010
  8. Hao PF, Zhang XW, Yao ZH, He F, Exp. Therm. Fluid Sci., 32, 423, 2007
  9. Zhuo L, He YL, Tang GH, Tao WQ, Int. J. Heat Mass Transf., 50(17-18), 3447, 2007
  10. Lelea D, Int. Commun. Heat Mass Transf., 37, 245, 2010
  11. Dean WR, Hurst JM, Mathematika, 6, 77, 1959
  12. Dean WR, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 5, 673, 1928
  13. Patankar SV, Pratap VS, Spalding DB, J. Fluid Mech., 62, 539, 1974
  14. Kalb CE, Seader JD, Int. J. Heat Mass Transf., 15, 801, 1972
  15. Sui Y, Lee PS, Teo CJ, Int. J. Therm. Sci., 50, 2473, 2011
  16. Sui Y, Teo CJ, Lee PS, Chew YT, Shu C, Int. J. Heat Mass Transf., 53(13-14), 2760, 2010
  17. Rosaguti NR, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 49(17-18), 2912, 2006
  18. Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 62, 391, 2013
  19. Rosaguti NR, Fletcher DF, Haynes BS, Chem. Eng. Technol., 28(3), 353, 2005
  20. Geyer PE, Rosaguti NR, Fletcher DF, Haynes BS, Microfluid Nanofluid, 2, 195, 2006
  21. Zheng ZY, Fletcher DF, Haynes BS, Int. J. Heat Mass Transf., 71, 758, 2014
  22. Jang JSR, IEEE Trans. Syst. Man. Cybern., 23, 665, 1993
  23. Mohanraj M, Jayaraj S, Muraleedharan C, Renew. Sust. Energ. Rev., 16, 1340, 2012
  24. Mohanraj M, Jayaraj S, Muraleedharan C, Int. J. Therm. Sci., 90, 150, 2015
  25. Mirsepahi A, Chen L, O’Neill B, Int. Commun. Heat Mass Transf., 41, 19, 2013
  26. Beigzadeh R, Rahimi M, Int. Commun. Heat Mass Transf., 39, 1647, 2012
  27. Mehrabi M, Pesteei SM, Int. Commun. Heat Mass Transf., 37, 1546, 2010
  28. Holman JP, Experimental Methods for Engineers, 3rd Ed. McGraw-Hill, New York (2011).
  29. Shing J, Jang R, Adaptive Network, Based Fuzzy Inference, CiteSeerx Publication (1993).
  30. Tong RM, Automatic, 13, 559, 1997
  31. Atmaca H, Cetisli B, Yavuz HS, The comparison of fuzzy inference systems and neural network approaches with ANFIS method for fuel consumption data, in: Second International Conference on Electrical and Electronics Engineering Papers ELECO’2001, Bursa, Turkey (2001).
  32. Rahimi M, Shabanian SR, Alsairafi AA, Chem. Eng. Process., 48(3), 762, 2009
  33. Cakmakci M, Bioproc. Biosyst. Eng., 30, 349, 2007
  34. Garson GD, AI Expert, 6, 47, 1991
  35. Beigzadeh R, Rahimi M, Shabanian SR, Fluid Phase Equilib., 331, 48, 2012
  36. Mehrabi M, Pesteei SM, Pashaee T, Int. Commun. Heat Mass Transf., 38, 525, 2011