Issue
Korean Journal of Chemical Engineering,
Vol.30, No.7, 1359-1367, 2013
Viruses as self-assembled nanocontainers for encapsulation of functional cargoes
Viruses naturally exhibit an incredible variety of sophisticated nanostructures, which makes them ideal biological building blocks for nanoengineered material research. By mimicking their spontaneous assembly process, tremendous advances have been made towards utilizing virus and virus-like particles (VLPs) as protein cages, scaffolds, and templates for nanomaterials in the last few years. This review outlines recent progress in the field of bionanotechnology in which viruses are introduced to encapsulate various functional cargoes in a precise and controlled fashion. The encapsulation mechanisms are summarized into three main strategies: electrostatic interaction, chemical conjugation, and covalent attachment by genetic manipulation. The combination with chemical modification and genetic engineering heralds a brilliant future for fabrication of functional nanomaterials. These well-defined architectures will find attractive applications in biosensing, drug delivery, enzyme confinement, light-harvesting system, and pharmaceutical therapy.
[References]
  1. Soto CM, Ratna BR, Curr. Opin. Biotechnol., 21, 426, 2010
  2. Kim JM, Chang SM, Muramatsu H, Isao K, Korean J. Chem. Eng., 28(4), 987, 2011
  3. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y, Angew. Chem. Int. Ed., 43, 2527, 2004
  4. Kim KK, Kim R Kim SH, Nature., 394, 595, 1998
  5. Domingo GJ, Orru S, Perham RN, J. Mol. Biol., 305, 259, 2001
  6. Rong J, Niu Z, Lee LA, Wang Q, Curr. Opin. Colloid Interface Sci., 16, 441, 2011
  7. Pokorski JK, Steinmetz NF, Mol. Pharm., 8, 29, 2011
  8. Lee G, Cho YS, Park S, Yi GR, Korean J. Chem. Eng., 28(8), 1641, 2011
  9. Douglas T, Young M, Science., 312, 873, 2006
  10. Kim KT, Meeuwissen SA, Nolte RJ, van Hest JC, Nanoscale., 2, 844, 2010
  11. Koudelka KJ, Manchester M, Curr. Opin. Chem. Biol., 14, 810, 2010
  12. Knipe DM, Howley PM, Fields Virology, 5th Ed., Lippincott Williams & Wilkins, Philadelphia, 2007
  13. Caspar DL, Klug A, Cold Spring Harb Symp. Quant. Biol., 27, 1, 1962
  14. Hemminga MA, Vos WL, Nazarov PV, Koehorst RB, Wolfs CJ, Spruijt RB, Stopar D, Eur. Biophys. J., 39, 541, 2010
  15. Gubser C, Hue S, Kellam P, Smith GL, J. Gen. Virol., 85, 105, 2004
  16. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE, Structure., 3, 63, 1995
  17. Tama F, Brooks CL, J. Mol. Biol., 318, 733, 2002
  18. Valegard K, Liljas L, Fridborg K, Unge T, Nature., 36, 345, 1990
  19. Parker MH, Casjens S, Prevelige PE, J. Mol. Biol., 281, 69, 1998
  20. Teschke CM, McGough A, Thuman-Commike PA, Biophys. J., 84, 2585, 2003
  21. Tang L, Nat. Struct. Biol., 8, 77, 2001
  22. Klug A, Philos. Trans. R. Soc. Lond. B Biol. Sci., 354, 531, 1999
  23. Demir M, Stowell MH, Nanotechnology., 13, 541, 2002
  24. Bancroft JB, Hiebert E, Bracker CE, Virology., 39, 924, 1969
  25. Li F, Zhang ZP, Peng J, Cui ZQ, Pang DW, Li K, Wei HP, Zhou YF, Wen JK, Zhang XE, Small., 5, 718, 2009
  26. Ren Y, Wong SM, Lim LY, J. Gen. Virol., 87, 2749, 2006
  27. Ma Y, Nolte RJ, Cornelissen JJ, Adv. Drug Deliv. Rev., 64, 811, 2012
  28. Aniagyei SE, DuFort C, Kao CC, Dragnea B, J. Mater.Chem., 18, 3763, 2008
  29. Douglas T, Young M, Nature, 393(6681), 152, 1998
  30. Sikkema FD, Comellas-Aragones M, Fokkink RG, Verduin BJ, Cornelissen JJ, Nolte RJ, Org. Biomol. Chem., 5, 54, 2007
  31. Brasch M, Cornelissen JJ, Chem. Commun., 48, 1446, 2012
  32. Shenton W, Douglas T, Young M, Stubbs G, Mann S, Adv. Mater., 11(3), 253, 1999
  33. Daniel MC, Tsvetkova IB, Quinkert ZT, Murali A, De M, Rotello VM, Kao CC, Dragnea B, ACS Nano., 4, 3853, 2010
  34. Loo L, Guenther RH, Lommel SA, Franzen S, J. Am. Chem. Soc., 129(36), 11111, 2007
  35. Comellas-Aragones M, Engelkamp H, Claessen VI, Sommerdijk NA, Rowan AE, Christianen PC, Maan JC, Verduin BJ, Cornelissen JJ, Nolte RJ, Nat. Nanotechnol., 2, 635, 2007
  36. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T, Adv. Mater., 19(8), 1025, 2007
  37. Schlick TL, Ding ZB, Kovacs EW, Francis MB, J. Am. Chem. Soc., 127(11), 3718, 2005
  38. Kovacs EW, Hooker JM, Romanini DW, Holder PJ, Berry KE, Francis MB, Bioconjug. Chem., 18, 1140, 2007
  39. Zhao Q, Chen W, Chen Y, Zhang L, Zhang J, Zhang Z, Bioconjug.Chem., 22, 346, 2011
  40. Lee LA, Niu Z, Wang Q, Nano Res., 2, 349, 2009
  41. Minten IJ, Hendriks LJA, Nolte RJM, Cornelissen JJLM, J. Am. Chem. Soc., 131(49), 17771, 2009
  42. Kang S, Uchida M, O'Neil A, Li R, Prevelige PE, Douglas T, Biomacromolecules, 11(10), 2804, 2010
  43. Tong GJ, Hsiao SC, Carrico ZM, Francis MB, J. Am. Chem. Soc., 131(31), 11174, 2009
  44. Hung CW, RNA packaging and gene delivery using Tobacco mosaic virus pseudo virions, Ph. D. Thesis, University of Maryland, U.S., 2008
  45. Ohtake N, Niikura K, Suzuki T, Nagakawa K, Mikuni S, Matsuo Y, Kinjo M, Sawa H, Ijiro K, Chembiochem., 11, 959, 2010
  46. Minten IJ, Claessen VI, Blank K, Rowan AE, Nolte RJ, Cornelissen JJ, Chem. Sci., 2, 358, 2011
  47. Glasgow JE, Capehart SL, Francis MB, Tullman-Ercek D, ACS Nano., 6, 8658, 2012
  48. Jung B, Rao AL, Anvari B, ACS Nano., 5, 1243, 2011
  49. Miller RA, Presley AD, Francis MB, J. Am. Chem. Soc., 129(11), 3104, 2007
  50. Endo M, Fujitsuka M, Majima T, Chemistry., 13, 8660, 2007
  51. Klem MT, Young M, Douglas T, J. Mater. Chem., 18, 3821, 2008
  52. Su Z, Wang Q, Angew. Chem. Int. Ed. Eng., 49, 10048, 2010
  53. Wang Q, Lin T, Tang L, Johnson JE, Finn MG, Angew.Chem. Int. Ed., 41, 459, 2002
  54. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG, J. Am. Chem. Soc., 125(11), 3192, 2003
  55. Steinmetz NF, Nanomedicine., 6, 634, 2010