Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.1, 72-78, 2009
전기전도성 이방성 복합재료 방전가공의 수치 해석
Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite
전기전도성 이방성 복합재료의 방전가공에 대하여 비정상상태 수식모델을 세우고 갤러킨의 유한요소법으로 해를 구하였다. 피삭재의 온도 분포와 분화구의 모양 및 공작물 제거 속도를 공정 매개변수에 관하여 구득하였다. 계산의 정확도와 효율을 위하여 앞선 연구에서 최적치로 선정된 12×12 요소의 비규칙 체눈을 사용하였다. 알루미나/티타늄 카바이드 복합재료의 물성을 재료의 물성으로 선정하였고 51.4 V의 전압과 7 A의 전류를 갖는 전력을 적용하였으며 제거 효율을 10%로 전열 이방성 계수를 2와 3으로 가정하였다. 불꽃이 일어나면서 피삭재는 즉시 녹기 시작하였고 열적 손상 영역이 형성되었다. 또한 시간이 흘러감에 따라서 분화구의 경계가 이동하는 것이 확인되었다. 반경 방향과 축 방향의 열전도도가 독립적으로 커지면 온도분포와 분화구의 모양이 각각 반경 방향과 축 방향으로 이동하였다. 공작물 제거 속도는 축 방향의 열전도도보다 반경 방향의 열전도도가 증가할 때 더욱 커지는 것으로 나타났다.
For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin‘s finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. The 12×12 irregular mesh that was chosen as the optimum in the previous analysis was used for computational accuracy and efficiency. A material having the physical properties of alumina/titanium carbide composite was selected and an electricity with power of 51.4 V and current of 7 A was applied, assuming the removal efficiency of 10 % and the thermal anisotropic factors of 2 and 3. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately, the temperature distribution and the shape of the crater were shifted in the radial and axial directions, respectively. The material removal rate was found to be higher when the conductivity was increased in the radial direction rather than in the axial direction.
[References]
  1. Dharmadhikari SW, Sharma CS, IX AIMTDR Conference, IIT, Kanpur, 316, 1980
  2. Snoeys R, Van Dyck F, Annals of CIRP, 20, 35, 1971
  3. Jilani ST, Pandey PC, Precision Eng., 4, 215, 1982
  4. Jilani ST, Pandey PC, J. Eng. Prod., 6, 123, 1983
  5. Pandit SM, Rajurkar KP, J. Heat Transfer, 105, 555, 1983
  6. Madhu P, Jain VK, Sundararajan T, Computers Eng., 2, 121, 1991
  7. Gadalla AM, Cheng YM, Conf. Mach. Comp. Mater. II, 17, 1993
  8. Ahn YC, Chung YS, Wang DH, Yun J, HWAHAK KONGHAK, 35(6), 850, 1997
  9. Ahn YC, Chung YS, Korean J. Chem. Eng., 19(4), 694, 2002
  10. Marafona J, Chousal JAG, Intern. J. Machine Tools Manufacture, 46, 595, 2006
  11. Salah NB, Ghanem F, Atig KB, Intern. J. Machine Tools Manufacture, 46, 908, 2006
  12. Ahn YC, Chung YS, “Numerical Simulation of the Electrodischarge Machining Process of a Conductive Ceramic Composite,” Machining Sci. Tech., Submitted.
  13. Reddy JN, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, NY(1993)
  14. Bromley LA, Chem. Eng. Prog., 46, 221, 1950
  15. Wang DH, Woo JY, Yun J, Ahn YC, J. Korean Soc. Prec. Eng., 14, 80, 1997