Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.3, 242-248, 2007
차량용 12-V 납축전지의 충·방전 모델링
Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery
자동차 전기장치 시스템을 최적화하기 위해서는 차량용 납축전지의 충전 및 방전 거동을 예측할 수 있는 모델링 기술이 필요하다. 본 연구에서는 유한요소법을 이용하여 차량용 12-V 납축전지의 충전 및 방전 거동을 예측할 수 있는 2차원 모델링을 수행하였다. 이 연구에 사용된 수학적 모델에는 전기화학반응 속도론, 전해질의 유동, 대류에 의한 이온의 전달현상, 전극의 시간에 따른 공극률의 변화 등이 고려되었다. 모델링의 신뢰성을 검증하기 위하여 방전 및 충전실험을 수행하였다. 방전실험은 25 ℃에서 C/5, C/10 및 C/20의 방전율에 대하여 수행하였고, 충전실험은 25 ℃에서 정전류-정전압 방법으로(제한전류 30A, 제한전압 14.24 V) 수행하였다. 모델에 근거하여 예측된 충·방전 거동은 충·방전 실험결과와 잘 일치하였다. 또한 2차원 모델링을 통하여 충·방전이 진행되는 동안 실제로 측정이 불가능한 납축전지 내부의 전류밀도, 전해액의 농도 및 충전상태(state of charge; SOC)의 분포를 예측할 수 있었다.
For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of 25 ℃. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.
[References]
  1. Gu H, Nguyen TV, White RE, J. Electrochem. Soc., 134(12), 2953, 1987
  2. Nguyen TV, White RE, J. Electrochem. Soc., 137(10), 2998, 1990
  3. Gu WB, Wang CY, Liaw BY, J. Electrochem. Soc., 144(6), 2053, 1997
  4. Tiedemann WH, Newman J, DeSua F, Collins, D. H.(Ed.), p.15, Academic Press, NY, 1977
  5. Vaaler LE, Brooman EW, Paper 780221, SAE Congress and Exposition, Detroit, MI, 1978
  6. Tiedemann WH, Newman J, Gross, S.(Ed.), p.23-39, The Electrochemical Society Softbound Proceedings Series, 79-1, Princeton, NJ, 1979
  7. Morimoto Y, Ohya Y, Abe K, Yoshida T, Morimoto H, J. Electrochem. Soc., 135(2), 293, 1988
  8. Bernadi DM, Gu H, Schoene AY, J. Electrochem. Soc., 140(8), 2250, 1993
  9. Maja M, Morello G, Spinelli P, J. Power Sources, 40(1), 81, 1992
  10. Hughes TJR, Prentice-Hall, NJ, 1987
  11. Brooks AN, Hughes TJR, Comput. Meth. Appl. Mech. Eng., 32(1), 199, 1982
  12. Kim SC, Hong WH, J. Power Sources, 77(1), 74, 1999
  13. Kim SC, Hong WH, J. Power Sources, 89(1), 15, 2000