Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 712-715, 2004
Hard Mask 용 SiO2의 NF3/Ar ICP 식각특성과 실험계획법과의 비교
Dry Etching of SiO2 Hard Mask in NF3/Ar Inductively Coupled Plasmas and Comparison with Design of Experiments
식각 공정에서 photo-resist의 열적 불안정성 때문에 하드 마스크의 사용이 증가되고 있다. 정확한 패턴을 구현하기 위해서는 먼저 하드 마스크의 패터닝 공정이 보장되어야 한다. NF3/Ar 유도결합 플라즈마를 사용하여 하드 마스크 물질로 사용되는 실리콘 산화막을 공정변수들을 변화시키면서 식각한 후, 공정변수들에 따른 실리콘 산화막의 식각 특성을 측정하였다. 600 W ICP 공급 전력 rhk 75 W RF 하부전극 전력에서 식각속도는 590 nm/min이었으며, photoresist의 변형이 없는 가장 좋은 식각 특성을 얻을 수 있었다. 실험계획법을 통해 얻은 최적 식각 조건은 600 W ICP 공급 전력, 75 W RF 하부전극 전력, 55%의 NF3 농도, 20 mTorr의 공정압력이었고, 이 때 식각 속도는 약 564 nm/min로 실제 실험결과와 약 4%의 오차범위 내에서 잘 일치하였다.
Hard mask was widely used as etch mask due to the thermal instability of photo-resist in the etch process. The patterning process of hard mask must be guaranteed before everything else in order to accomplish the fine pattern transfer. The SiO2 film as the hard mask was etched in the NF3/Ar inductively coupled plasmas. Etch characteristics of the SiO2 film as a function of the processing parameters were investigated. The best etch characteristics without deformation of photo-resist were obtained at 600 W ICP source power and 75 W RF chuck power, and the etch rate was 590 nm/min. The optimum etch conditions of the SiO2 film by response surface method were 600 W ICP source power, 75 W RF chuck power, 55% NF3 concentration, and 20 mTorr operating pressure. Etch rate was 564 nm/min at the optimum etch conditions and was in good agreement within 4% error compared with the etch rate obtained by the experiment.
[References]
  1. Ferstl M, Microelectron. Eng., 61-62, 881, 2002
  2. Lane JM, Bogart KHA, Klemens FP, Lee JTC, J. Vac. Sci. Technol. A, 18(5), 2067, 2000
  3. Matsui N, Mashimo K, Egami A, Konoshi A, Okada O, Tsukada T, Vacuum, 66, 479, 2002
  4. Gabriel CT, Kim RY, Baker DC, J. Vac. Sci. Technol. A, 18(4), 1420, 2000
  5. Madou MJ, Fundamentals of Microfabrication: The Science of Miniaturization., 2nd ed., CRC press, New York, 2001
  6. Wolf S, Tauber RN, Silicon Processing for the VLSI Era, vol. 1: Process Technology., 2nd ed., LATTICE press, California, 2000
  7. Tsai WT, Chen HP, Hsien WY, J. Loss Prev. Process Ind., 15, 65, 2002
  8. Nakamura S, Itano M, Aoyama H, Shibahara K, Yokoyama S, Hirose M, Jpn. J. Appl. Phys., 42, 5759, 2003
  9. Taguchi G, System of Experimental Design, Vol. 1 and 2, 1st ed., Karus International Publications, New York, 1987
  10. Box GEP, Wilson KB, J. Royal Statistical Society, B13, 1, 1951
  11. Hill WJ, Hunter WG, Technometrics, 8, 571, 1966
  12. Myers RH, Response Surface Methodology, 1sted., Allyn and Bacon Inc., Boston, 1971
  13. Park JS, Kim TH, Choi CS, Hahn YB, Korean J. Chem. Eng., 19(3), 486, 2002
  14. Im YH, Kang HG, Han BS, Hahn YB, Electrochem. Solid State Lett., 4(10), C77, 2001
  15. Hahn YB, Pearton SJ, Korean J. Chem. Eng., 17(3), 304, 2000
  16. Im YH, Hahn YB, Korean J. Chem. Eng., 19(2), 347, 2002