Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.36, No.6, 896-902, 1998
[2.2]Paracyclophane으로부터 패릴린-N 박막의 저온 증착
Low Temperature Vapor Deposition of Parylene-N Films from [2.2]Paracyclophane
초고집적회로에서 층간 절연체로 사용을 위하여 [2.2]paracyclophane으로부터 패릴린-N(parylene-N : PA-N) 박막을 20℃ 이하의 저온에서 증착하였다. 박막 두께는 AFM과 α-step profilometry에 의해, 박막 특성은 FTIR, DSC, TGA, SEM 및 C-V등에 의해 측정하였다. 증착된 PA-N박막의 두께는 5,000-12,000 Å이었으며, 증착 속도는 30-70 Å/min이었다. PA-N 박막의 유전율은 2.7±0.05로 나타났다. 운반 기체 유량, 전구체 분해 온도, 증착 온도가 증가함에 따라 증착 속도가 감소한 반면, 증착 압력이 증가하는 경우에는 증착 속도가 증가하였다. 전구체 분해 온도가 750℃이거나 증착 압력이 1 torr보다 높은 경우에는 기상에서의 입자 형성으로 인해 박막 표면이 조악하였다. PA-N 박막 성장은 p-xylylene 단량체의 응축이 율속 단계인 것으로 나타났다.
Parylene-N(PA-N) films for use as interlayer dielectrics in ULSI were deposited from [2.2]paracyclophane at low temperatures below 20℃. The film thickness was measured using AFM and α-step profilometry and the film properties were evaluated using FTIR, DSC, TGA, SEM, and C-V techniques. The film thickness measured was 5,000-12,000Å and the growth rate was 30-70 Å/min. The dielectric constant of the deposited PA-N films was found to be 2.7± 0.05. The deposition rate decreased with increasing carrier gas flow rate, precursor decomposition temperature or wafer temperature, but it increased with increasing pressure. At a precursor decomposition temperature of 750℃ or at a deposition pressure above 1 tour the film surface became rough due to particle formation in the gas phase. It was shown that the condensation of a pxylylene monomer was a rate-limiting step in the growth of the PA-N films.
[References]
  1. Kim EJ, Gill WN, J. Cryst. Growth, 140, 308, 1994
  2. You L, Yang GR, Lang CI, Wu P, Moore JA, McDonald JF, Lu TM, "Chemical Perspectives of Microelectronic Materials III," edited by Abernathy, C.R., Bates, C.W., Bohling, D.A. and Hobson, W.S., Mat. Res. Soc. Symp. Proc., Pittsburgh, PA, Vol. 282, 593, 1993
  3. You L, yang GR, Lang CI, Moore JA, Wu P, McDonald JF, Lu TM, J. Vac. Sci. Technol. A, 11, 3047, 1993
  4. Wu PK, Yang GR, McDonald JF, Lu TM, J. Electr. Mater., 24, 53, 1995
  5. Park YB, Kang JK, Rhee SW, HWAHAK KONGHAK, 34(2), 143, 1996
  6. Jeon BJ, Oh IH, Lim TH, Jung IH, HWAHAK KONGHAK, 35(3), 374, 1997
  7. Kim EJ, Gill WN, Korean J. Chem. Eng., 15(1), 56, 1998
  8. Gorham WF, J. Polym. Sci. A: Polym. Chem., 4, 3027, 1966
  9. Szware M, Polym. Eng. Sci., 16, 473, 1976
  10. Joesten BL, J. Appl. Polym. Sci., 18, 439, 1974
  11. Majid N, Dabral S, McDonald JF, J. Electr. Mater., 18, 301, 1989
  12. Dabral S, Zhang X, Wu XM, Yang GR, You L, Lang CI, Hwang K, Cuan G, Chiang C, Bakhru H, Olson R, Moore JA, Lu TM, McDonald JF, J. Vac. Sci. Technol. B, 11, 1825, 1993
  13. Yeh JTC, Grebe KR, J. Vac. Sci. Technol. A, 1, 604, 1983
  14. Gorham WF, Niegisch WD, Encyclopedia of Polymer Science and Technology, edited by Mark, H.F., Gaylord, N. and Bikales, N.M., Interscience, New York, 1971