Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.35, No.5, 717-723, 1997
촉매 충전층 반응기에 대한 매개변수 감응도 및 온도 일방 질주 현상 해석
Analysis of Parametric Sensitivity and Temperature Runaway Phenomena in catalytic Fixed-Bed Reactor
O-xylene(o-x)의 산소에 의한 산화로부터 무수프탈산(PA)을 합성하는 촉매 충전층 반응기의 거동을 해석하였다. 촉매 충전층 반응기의 거동은 대류-확산-반응 기구로 묘사되는 2차원, 비정상 상태의 유사 균일상 모델로 가정하고, 반응속도식은 Arrhenius Type을 사용하여 조사하였다. PA 생산 공정의 조업 조건에서 실측한 이중 촉매 충전층 반응기의 온도 분포와 수율에 대한 최적 적합으로부터 최적 매개 변수값을 추정함으로써 예측 모델을 구성하였다. 예측 모델은 이중 촉매 충전층 반응기에서와 동일한 수율 및 전화율을 생성시킬 수 있도롤 모사된 활성이 균일한 단일 촉매층 반응기가 열점에서 36.15℃ 이상의 높은 온도 상승을 일으켰다. 단일 촉매 충전층 반응기와 이중 촉매 충전층 반응기의 가능한 조업 조건의 변화에 의한 Paranetric sensitivity를 예측하였다. 이중 촉매 충전층 반응기는 단일 촉매 충전층 반응기보다 유입 반응물의 온도, 농도, 유량 및 냉매 유량에 대한 넓은 조업 범위의 거동을 나타냄으로써 조업 조건의 작은 변화에 의해 생산량의 증가는 물론 안전 조업 조건을 보장할 수 있었다.
We analyzed the behavior of catalytic fixed-bed reactor(CFBR) which synthesizing Phthalic Anhydride(PA) from air oxidation of o-xylene. The behavior of CFBR describing convection-diffusion-reaction mechanism was examined by using two-dimensional, transient, pseudohomogeneous model, for the kinetics of Arrhenius type. Prediction model was composed by optimum parameter estimation from best fitting on temperature profile and yield of dual CFBR which was measured in the industrial field. An uniform CFBR with same yield and conversion for dual CFBR generated a 36.15℃ higher hot spot temperature than a dual CFBR. We could predict parametric sensitivity according to the variation of possible operating condition of uniform CFBR and dual CFBR. Dual CFBR showed the behavior of wide operating range than uniform CFBR on the temperature, concentration, volumetric flow rate of feed reactant and coolant flow rate, thus, dual CFBR with nonuniform activities could assure safety operation condition by minute variation of operating condition.
[References]
  1. Hoffman HL, Riddle L, Hydrocarb. Process., 41, 1988
  2. Wainwright M, Foster N, Catal. Rev.-Sci. Eng., 18(2), 211, 1979
  3. Nikolov V, Klissursfei D, Anastasov A, Catal. Rev.-Sci. Eng., 33, 319, 1991
  4. Sadhukhan P, Petersen EE, AIChE J., 22, 808, 1976
  5. Froment GF, Bischoff KB, "Chemical Reactor Analysis and Design," 2nd ed., John Wiley & Sons, NY, 1990
  6. Devigilis A, Gerunda A, Hydrocarb. Process., 61, 173, 1982
  7. Welsenaere RJ, Froment GF, Chem. Eng. Sci., 25, 1503, 1970
  8. Lopez AS, Delasa HI, Porras JA, Chem. Eng. Sci., 36, 285, 1981
  9. Pirkle JC, Wachs IE, Chem. Eng. Prog., 29, 1987
  10. Mehta PS, Sams WN, Luss D, AIChE J., 27, 234, 1981
  11. Nikolov V, Klissurski D, Anastasou A, Catal. Rev.-Sci. Eng., 33, 319, 1991
  12. Nobbenhuis MG, Hug P, Mallat T, Baiker A, Appl. Catal. A: Gen., 108(2), 241, 1994
  13. Papageorgiou JN, Froment GF, Chem. Eng. Sci., 51(10), 2091, 1996
  14. Yun YS, Park PW, Rho HL, Jeong YO, HWAHAK KONGHAK, 35(3), 380, 1997
  15. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  16. Jeong(Park) YO, Ph.D. Dissertation, Univ. of Houston, Texas, U.S.A., 1989
  17. Stefano DG, Antonio T, Chem. Eng. Sci., 33, 697, 1978
  18. Kershenbaum L, Lopez-Isunza I, Trans. Inst. MC, 8, 137, 1986