Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.4, 378-387, 1993
TiN 박막 제조를 위한 PECVD 공정의 모사화 연구
Simulation Study of PECVD for TiN Thin Films
본 연구에서는 TiCl4/N2/H2/Ar을 출발물질로 하여 TiN 박막을 PECVD 공정으로 제조하는데 영향을 끼치는 변수에 대해서 1차원 분산모델을 이용하여 모사하고 실험결과와 비교하였다. 공정모사는 플라즈마 발생에 따른 반응물의 분해반응을 입력되는 R.F. power의 함수로 단순화 시키고, Si-wafer 위에서의 증착속도는 Langmuir-Hinshelwood-Hougen-Watson형의 속도식을 사용하였으며, 표면반응이 TiCl3또는 TiCl2로부터 시작되는 두 가지 반응경로에 대하여 모사하였다. 모사결과는 온도, 낮은 R.F. power의 영역에 대해서 제한적으로 실제 경향을 따르고 있음을 알 수 있었으며, 높은 R.F. power 영역과 조성변화에는 실제거동을 잘 표현하지 못함을 알 수 있었다.
Deposition rates for TiN films starting from the mixture of TiCl4/N2/H2/Ar in PECVD(Plasma Enhanced Chemical Vapor Deposition) reactor were simulated with 1-dimensional radial dispersion model and these results were compared with the experimental results. Plasma dissociative reaction parameters were expressive of a function of R.F. power only, and TiN deposition rates on Si wafer were estimated by assuming a Langmuir-Hinshelwood-Hougen-Watson(L.H.H.W.) mechanism. In considering the reaction mechanisms, surface reactions starting from TiCl3 or TiCl2 were evaluated, respectively. Calculated TiN deposition rates agreed with the experimental results for the changes of temperature, and low range R.F. power, but some discrepancy was found for the changes of H2/N2 ratio and high range R.F. power.
[References]
  1. Sanders FHM, Verspui G, Thin Solid Films, 161, L87, 1987
  2. Ianno NJ, Ahmed AU, Engelbert DE, J. Electrochem. Soc., 136(1), 276, 1989
  3. Cho JS, Nam SW, Chun JS, J. Mater. Sci., 17, 2495, 1982
  4. Cao ZR, Du YS, Miao HF, Surf. Eng., 5(4), 315, 1989
  5. Nakanishi N, Mori S, Kato E, J. Electrochem. Soc., 137(1), 322, 1990
  6. Ohring M, "The Materials Science of Thin Films," Academic Press, New Jersey, 1991
  7. Vossen JL, Kern W, "Thin Film Processes," Academic Press, New Jersey, 1978
  8. Vossen JL, Kern W, "Thin Film Processes II," Academic Press, New Jersey, 1991
  9. Bunshah RF, "Deposition Technologies for Films and Coatings," Noyes, New Jersey, 1982
  10. Chapman B, "Glow Discharge Processes," Wiley, New York, 1980
  11. Graves DB, Jensen KF, IEEE Trans. Plasma Sci., PS14(2), 78, 1986
  12. Turban G, Catherine Y, Grolleau B, Plasma Chem. Plasma Process., 2(1), 61, 1982
  13. Chen I, Thin Solid Films, 101, 41, 1983
  14. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," Wiley, New York, 1960
  15. Fogler HS, "Elements of Chemical Reaction Engineering," Prentice-Hall, New Jersey, 1986
  16. Dalvie MJ, Jensen KF, Graves DB, Chem. Eng. Sci., 41(4), 653, 1986
  17. Economou DJ, Alkire C, J. Electrochem. Soc., 135(11), 2786, 1987
  18. Reid RC, Prausnitz JM, Poling BE, "Properties of Gases and Liquids," McGraw-Hill, New York, 1988
  19. Jang DH, Chun JS, Thin Solid Films, 169, 57, 1989
  20. Kline LE, Partlow WD, Young RM, Mitchell RR, Congedo TV, IEEE Trans. Plasma Sci., 19(2), 278, 1991
  21. Dembovsky V, "Plasma Metallurgy-The Principles," Elsevier, 1985
  22. 홍준표, "컴퓨터 수치해석," 문운당, 1991
  23. Ramirez WF, "Computational Methods for Process Simulations," Butterworth, Boston, 1989
  24. "JANAF Thermochemical Tables," U.S.D.C., 1971
  25. "IMSL Library," IMSL, Houston, 1984
  26. Rhallabi A, Catherine Y, IEEE Trans. Plasma Sci., 19(2), 270, 1991