Issue
Korean Chemical Engineering Research,
Vol.43, No.2, 305-312, 2005
가교형 폴리우레탄이미드의 합성을 통한 잔류 응력 거동 측정 및 특성 분석
Resudual Stress Behavior and Characterization of Poly(urethane-imide) Crosslinked Networks
본 연구에서는 새로운 형태의 미세 전자 소자용 절연필름으로서 사용이 기대되는 폴리우레탄이미드를 용해성 폴리 이미드와 폴리우레탄의 가교에 의해 합성하여 폴리우레탄의 함량에 따른 잔류응력 및 모폴로지, 열적 특성변화에 관해 연구하였다. 기존의 폴리우레탄이미드와는 달리 가교가 가능한 말단기로서 maleic anhydride(MA)를 사용하여 용해 성 폴리이미드(6FDA-ODA/MA)를 화학적 이미드화법을 사용하여 합성하였다. 여기에 폴리우레탄 전구체를 hydroxyl ethyl acrylate로 반응시켜 만들어진 폴리우레탄을 가교시킴으로써 네트워크 구조의 새로운 폴리우레탄이미드 필름을 제조한 후 thin film stress analyzer(TFSA), XRD, TGA, DMTA를 이용해 그 특성을 분석하였다. 종래의 다른 폴리우레탄이미드 합성법과는 차별화된 각각의 폴리머의 가교형 말단끼리의 결합을 유도하는 제조법을 이용하여 합성함으로 써 상온에서 잔류응력 값이 폴리우레탄의 함량이 증가할수록 감소하는 것으로 나타났다. 이러한 응력 실험 결과는 고분자 주쇄 구조의 모폴로지에 의해 영향을 받는 것을 확인할 수 있었고, 열안정성 또한 기존 폴리우레탄(240 ℃)에 비해 많이 향상된 것을 확인할 수 있었다. 잔류응력 측정 온도 범위하에서 열팽창계수는 폴리우레탄의 함량이 증가함에 따라 증가하였다.
Poly(urethane-imide)s were prepared by reaction between crosslinkable endgroup containing soluble polyimide (PI) by chemical imidization and acrylate end-capped polyurethane (PU). Poly (amic acid) was prepared from 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-oxydianiline (ODA) and then end-capped with maleic anhydride (MA). The PU prepolymers were prepared by the reaction of polycaprolactone diol, tolylene 2,4-diisocyanate and end-capped with hydroxyl ethyl acrylate. The effect of PU content on the residual stress behavior, morphology and thermal property was studied. The poly(urethane-imide)s were characterized by thin film stress analyzer (TFSA), XRD, TGA and DMTA. Low residual stress and slope in cooling curve were achieved by higher PU content. Compared to typical polyurethane, these polymers exhibited better thermal stability due to the presence of the imide groups. Finally the residual stress of poly(urethane-imide)s was strongly affected by the morphological structure.
[References]
  1. Ministry of Science and Technology, "Development of High Performance Polymer Drived from Imide", Vol. 1, 1992
  2. Ministry of Science and Technology, "Development of HIgh Performance Polymer Drived from Imide", Vol. 2, 1992
  3. Chung H, Lee J, Hwang J, Han H, Polymer, 42(18), 7893, 2001
  4. Chung H, Jang WB, Hwang J, Han H, J. Polym. Sci. B: Polym. Phys., 39(7), 796, 2001
  5. Speckhard TA, Hwang KS, Lin SB, J. Appl. Polym. Sci., 30, 647, 1985
  6. Yu X, Grady BP, J. Appl. Polym. Sci., 49, 1943, 1993
  7. Ku CC, Liepins R, "Electrical Properties of Polymers: Chemical Principles", Hanser Publisher, 1987
  8. Wilson D, Stenzenberger HD, Hergenrother PM, "Polyimides", Chapman & Hall, New York, 1990
  9. Ree M, Kim K, Woo SH, Chang H, J. Appl. Phys., 81, 698, 1997
  10. Bssonov MI, Koton MM, Kudryyavtsev VV, Laius LA, "Polyimides: Thermally Stable Polymer", Consltants Bureu, New York, 1987
  11. Krishnan PSG, Cheng CZ, Cheng YS, Cheng JWC, Macromol. Mater. Eng., 288, 735, 2003