Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1863-1871, 2022
Preparation of polydopamine-coated TiO2 composites for photocatalytic removal of gaseous ammonia under 405 nm violet-blue light
Although photocatalytic reactions using the ultraviolet (UV) range (particularly UV B (280-320 nm) wavelengths) is well-established, the photocatalytic effect of longer wavelengths (especially that of UVA (≥380 nm) and visible light (≥400 nm)) have only recently been studied and utilized for environmental applications. In this work, we coated polydopamine (PDA) and TiO2 on a support and investigated the synergistic effects of the corresponding composites for the photocatalytic removal of gaseous ammonia under 405 nm violet-blue light. The PDA layer with TiO2 was covalently attached on a ceramic ball using the drop-casting method. The roughness and functional groups of the TiO2-PDA coated ball surfaces were verified using an infrared imaging microscope and field emission scanning electron microscope (FE-SEM). The photocatalytic activity of the obtained hybrid TiO2-PDA coated ball for the removal of ammonia was investigated using a UV C and 405 nm LED lamp at 24 ℃. The results showed that both the TiO2 (control sample) and TiO2-PDA coated balls successfully removed ammonia under similar experimental conditions with the 254 nm UV C lamp. Notably, the TiO2-PDA coated ball exhibited an enhanced ammonia removal efficiency of 72% under 405 nm LED light irradiation. Thus, the TiO2-PDA coated ball is a promising indoor air cleaning technique under LED light irradiation.
[References]
  1. Sanches SG, Flores JH, Silva MIP, Mater. Res. Bull., 109, 82, 2019
  2. Likodimos V, Appl. Catal. B: Environ., 230, 269, 2018
  3. Zhang L, Xu L, He J, Zhang J, Electrochim. Acta, 117, 192, 2014
  4. Hernández S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G, Phys. Chem. Chem. Phys., 17, 7775, 2015
  5. Xiaoya L, Jingang X, Lingyuan L, Xiang J, Heqing F, Int. J. Polym. Mater., 66, 835, 2017
  6. Verbruggen SW, Keulemans M, Filippousi M, Flahaut D, Tendeloo GV, Lacombe S, Martens JA, Lenaerts S, Appl. Catal. B: Environ., 156-157, 116, 2014
  7. Vasilaki E, Georgaki I, Vernardou D, Vamvakaki M, Katsarakis N, Appl. Surf. Sci., 353, 865, 2015
  8. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H, Nano Res., 3, 701, 2010
  9. Chiu SM, Chen ZS, Yang KY, Hsu YL, Gan D, J. Mater. Process. Technol., 192-193, 60, 2007
  10. Mahdieh ZM, Shekarriz S, Taromi FA, Fibers Polym., 22, 87, 2021
  11. Pénard AL, Gacoin T, Boilot JP, Acc. Chem. Res., 40(9), 895, 2007
  12. Münz WD, Hauzer FJM, Schulze D, Buil B, Surf. Coat. Technol., 49(1-3), 161, 1991
  13. Mahltig B, Fischer A, J. Polym. Sci. B: Polym. Phys., 48, 1562, 2010
  14. Qiu WZ, Yang HC, Xu ZK, Adv. Colloid Interface Sci., 256, 111, 2018
  15. Gu GE, Park CS, Cho HJ, Ha TH, Bae J, Kwon OS, Lee JS, Lee CS, Sci. Rep., 8(1), 4393, 2018
  16. Lee H, Dellatore SM, Miller WM, Messersmith PB, Science, 318(5849), 426, 2007
  17. Lee JJ, Park IS, Shin GS, Lyu SK, Ahn SG, Bae TS, Lee MH, Int. J. Precision Eng. Manufacturing, 15(8), 1647, 2014
  18. Lee M, Ku SH, Ryu J, Park CB, J. Mater. Chem., 20(40), 8848, 2010
  19. Lee M, Wi J, Koziel JA, Ahn H, Li P, Chen B, Meiirkhanuly Z, Banik C, Jenks W, Atmosphere, 11(3), 283, 2020
  20. Maurer DL, Koziel JA, Chemosphere, 221, 778, 2019
  21. Guarino M, Costa A, Porro M, Bioresour. Technol., 99(7), 2650, 2008
  22. Kite SV, Kadam AN, Sathe DJ, Patil S, Mali SS, Hong CK, Lee SW, Garadkar KM, ACS Omega, 6(26), 17071, 2021
  23. Della Vecchia NF, Luchini A, Napolitano A, D’Errico G, Vitiello G, Szekely N, d’Ischia M, Paduano L, Langmuir, 30(32), 9811, 2014