Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1796-1804, 2022
Characteristics of Li2CO3 as sintering aid for Ce0.8Sm0.2 O2-δ electrolyte in solid oxide fuel cells
Owing to its excellent ionic conductivity, 20 mol% samarium doped ceria (Ce0.8Sm0.2O2-δ, SDC) is considered a promising alternative as an electrolyte in solid oxide fuel cells (SOFCs). SDC electrolytes, however, require high sintering temperatures over 1,600 ℃ to attain sufficient density to be SOFC electrolytes. To lower the SDC sintering temperature, different amounts of Li2CO3 (0-12mol% of Li) were evaluated as a sintering aid for SDC electrolytes. The SDC electrolyte samples with Li were sintered at 1,400 ℃ and were compared with SDC electrolytes sintered at 1,600 ℃. The SDC electrolyte with 6mol% of Li sintered at 1,400 ℃ (Li6SDC1400) was densified to 97.495% of theoretical density (T.D.), which is similar to that achieved by the SDC electrolyte sintered at 1,600 ℃ (97.433% of T.D.). The improved formation of grain boundary in the Li6SDC1400 sample increased the density of the SDC, resulting in enhancement of ionic conductivity and cell performance. At 800 ℃, the maximum power density of the Li6SDC1400 electrolyte sample was 120.15mW/cm2.
[References]
  1. Lee JM, Yun JW, Ceram. Int., 42, 8698, 2016
  2. Zhan Z, Lin Y, Pillai M, Kim I, Barnett SA, J. Power Sources, 161, 460, 2006
  3. Ormerod RM, Chem. Soc. Rev., 32, 17, 2003
  4. Brett DJ, Alan A, Brandon NP, Skinner SJ, Chem. Soc. Rev., 37, 1568, 2008
  5. Jo DH, Chun JH, Park KT, Hwang JW, Lee JY, Jung HW, Kim SH, Korean J. Chem. Eng., 28, 1844, 2011
  6. Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29, 349, 2012
  7. Chen M, Zhang H, Fan L, Wang C, Zhu B, Int. J. Hydrog. Energy, 39, 12309, 2014
  8. Zinkevich M, Djurovic D, Aldinger F, Solid State Ion., 177, 989, 2006
  9. Zhu T, Lin Y, Yang Z, Su D, Ma S, Han M, Chen F, J. Power Sources, 261, 255, 2014
  10. Wang X, Ma Y, Raza R, Muhammed M, Zhu B, Electrochem. Commun., 10, 1617, 2008
  11. Singh B, Bhardwaj A, Gautam SK, Kumar D, Parkash O, Kim IH, Song SJ, J. Power Sources, 345, 176, 2017
  12. Zhang G, Li W, Huang W, Cao Z, Shao K, Li F, Tang C, Li C, He C, Zhang Q, Fan L, J. Power Sources, 386, 56, 2018
  13. Khan I, Tiwari PK, Basu S, Electrochim. Acta, 294, 1, 2019
  14. Zhang X, Deces-Petit C, Yick S, Robertson M, Kesler O, Maric R, Ghosh D, J. Power Sources, 162, 480, 2006
  15. Fan L, Wang C, Chen M, Zhu B, J. Power Sources, 234, 154, 2013
  16. Zhu B, Li S, Mellander BE, Electrochem. Commun., 10, 302, 2008
  17. Chen PL, Chen IW, J. Am. Ceram. Soc., 79, 3129, 1996
  18. Chen PL, Chen IW, J. Am. Ceram. Soc., 80, 637, 1997
  19. Tianshu Z, Hing P, Huang H, Kilner J, J. Mater. Process. Technol., 113, 463, 2001
  20. Herring C, J. Appl. Phys., 21, 301, 1950
  21. Wang J, Chen X, Xie S, Chen L, Wang Y, Meng J, Zhou D, J. Power Sources, 428, 105, 2019
  22. Le S, Zhu S, Zhu X, Sun K, J. Power Sources, 222, 367, 2013
  23. Yoshida H, Inagaki T, J. Alloy. Compd., 408, 632, 2006
  24. Villas-Boas LA, Figueiredo FMI, de Souza DPF, Marques FBM, Solid State Ion., 262, 522, 2014
  25. Wei T, Jia L, Luo J, Chi B, Pu J, Li J, Appl. Surf. Sci., 506, 144699, 2020
  26. Guo X, Solid State Ion., 81, 235, 1995
  27. Guo X, Solid State Ion., 96, 247, 1997
  28. Guo X, Comput. Mater. Sci., 20, 168, 2001
  29. Guo X, Sigle W, Fleig J, Maier J, Solid State Ion., 154, 555, 2002
  30. Guo X, Zhang Z, Acta Mater., 51, 2539, 2003
  31. M’Peko JC, de Souza MF, Appl. Phys. Lett., 83, 737, 2003
  32. Guo X, Waser R, Prog. Mater. Sci., 51, 151, 2006
  33. Ruifeng G, Zongqiang M, J. Rare Earth, 25, 364, 2007
  34. Prakash BS, Kumar SS, Aruna SR, B. Mater. Sci., 40, 441, 2017
  35. Nie X, Chen Y, Mushtaq N, Rauf S, Wang B, Dong W, Wang X, Wang H, Zhu B, Nanoscale Res. Lett., 14, 1, 2019