Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1850-1862, 2022
Removal of direct dyes by coagulation: Adaptability and mechanism related to the molecular structure
The textile industry uses a variety of synthetic dyes for dyeing and discharges a large amount of colored wastewater. It is difficult to achieve good decolorization effect for textile wastewater by conventional biological treatment methods, because it contains various synthetic dyes with complex structures. At present, coagulation is an economical and effective treatment method. However, in dye removal by coagulation research, the adaptability and mechanisms of coagulation removal of many dyes are still unknown due to the wide variety of dyes in use. In this study, ferric chloride (FeCl3), aluminum chloride (AlCl3) and magnesium chloride (MgCl2) were selected as coagulants, and direct orange 26 (DO), direct yellow 11 (DY) and direct black 19 (DB) were used as the dye samples to conduct a series of coagulation experiments; in order to understand the coagulation adaptability and mechanism for high removal efficiency of direct dyes. In this system without particles, the direct dyes were dissolved directly in pure water and maintained in molecular state. The results showed that 1) AlCl3, FeCl3 and MgCl2 exhibited superior coagulation efficiency on the three dyes. Direct dyes which contain more amino functional groups are more easily removed by coagulation. 2) The influence of hydraulic conditions on the residual turbidity was more significant compared with the color removal. 3) Zeta potential increased with the increase of the coagulant dosage, but the colloidal particles did not re-stabilize. This proved that charge neutralization is not the dominant mechanism of coagulation. The FT-IR and XRD patterns indicated that the direct dyes were removed by the chemical combination of the -SO3H on the dye molecule and the hydrolysate of the coagulant.
[References]
  1. Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M, Process Saf. Environ. Protect., 143, 138, 2020
  2. Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R, J. Clean Prod., 208, 656, 2018
  3. Shah H, Muhammad K, Ali KS, Kausar S, Zarbad S, Hongli S, Qadeer K, Basit SA, Ur RW, Youssef AG, Usman G, Int. J. Biol. Macromol., 168, 383, 2021
  4. Hailu D, Guangyu A, Jiao RY, Tharindu R, Lu S, Wang DS, Sep. Purif. Technol., 259, 1, 2021
  5. Javanbakht V, Mohammadian M, J. Mol. Struct., 1239, 130496, 2021
  6. Peng C, Chen L, Wu X, Wei X, Tehrim A, Dai M, Xu S, J. Environ. Chem. Eng., 9, 105690, 2021
  7. Wang R, Jin X, Wang ZY, Gu WT, Wei ZC, Huang YJ, Qiu Z, Jin PK, Bioresour. Technol., 247, 1233, 2018
  8. Zhao H, Wang R, Deng H, Zhang L, Gao L, Zhang L, Jiao T, ACS Omega, 6, 294, 2021
  9. Rehman R, Lahiri SK, Islam A, Wei P, Xu Y, ACS Omega, 6, 22188, 2021
  10. Beluci NCL, Mateus GAP, Miyashiro CS, Homem NC, Gomes RG, Fagundes-Klen MR, Bergamasco R, Vieira AMS, Sci. Total Environ., 664, 222, 2019
  11. Eslami H, Esmaeili A, Ehrampoush MH, Ebrahimi AA, Taghavi M, Khosravi R, J. Water. Process. Eng., 36, 101342, 2020
  12. Li Y, Zhang T, Zhou H, Mater. Prot., 52, 104, 2019
  13. Badawi AK, Zaher K, J. Water. Process. Eng., 40, 101963, 2021
  14. Tianzhi W, Weijie W, Hongying H, Khu ST, J. Clean Prod., 312, 127798, 2021
  15. Shi B, Li G, Wang D, Feng C, Tang H, J. Hazard. Mater., 143, 567, 2007
  16. Aboelfetoh EF, Aboubaraka AE, Ebeid EM, J. Environ. Manage., 288, 1121481, 2021
  17. Ahangarnokolaei MA, Ayati B, Ganjidoust H, Environ. Technol. Inno., 22, 101459, 2021
  18. Kanhaiya L, Anurag G, J. Environ. Chem. Eng., 7, 1, 2019
  19. Tolkou AK, Mitrakas M, Katsoyiannis IA, Ernst M, Zouboulis AI, Chemosphere, 231, 528, 2019
  20. Wang YF, Gao BY, Yue QY, Wang Y, J. Environ. Sci., 23, 1626, 2011
  21. Adebayo IO, Olukowi OO, Zhiyuan Z, Zhang Y, J. Water. Process. Eng., 44, 102322, 2021
  22. Jiao RY, Fabris R, Chow CWK, Drikas M, Leeuwen JV, Wang DS, Xu ZZ, J. Environ. Sci., 57, 338, 2017
  23. Lu S, Liu L, Yang Q, Demissie H, Jiao R, An G, Wang D, Sci. Total Environ., 786, 147508, 2021
  24. Demissie H, An G, Jiao R, Ritigala T, Lu S, Wang D, Sep. Purif. Technol., 259, 1, 2021
  25. Yeap KL, Teng TT, Poh BT, Morad N, Lee KE, Chem. Eng. J., 243, 305, 2014
  26. Yang ZL, Liu XX, Gao BY, Zhao S, Wang Y, Yue QY, Li Q, Sep. Purif. Technol., 118, 583, 2013
  27. Li WP, Lu JF, Liu ML, Zhao JH, Chem. Ind. Eng. Pro., 36, 4286, 2017
  28. Bouyakoub AZ, Lartiges BS, Ouhib R, Kacha S, Samrani AGE, Ghanbaja J, Barres O, J. Hazard. Mater., 187, 264, 2011
  29. Yu WZ, Gregory J, Campos L, Li GB, Chem. Eng. J., 171, 425, 2011
  30. Bubakova P, Pivokonsky M, Filip P, Powder Technol., 235, 540, 2013
  31. Chakraborti RK, Gardner KH, Kaur J, Atkinson JF, J. Water. Supply. Res. T., 56, 1, 2007
  32. McYotto F, Wei QS, Macharia DK, Huang MH, Shen CS, Chow CWK, Chem. Eng. J., 405, 126674, 2021
  33. Yang S, Li W, Zhang HJ, Wen YB, Ni YH, Sep. Purif. Technol., 209, 238, 2018
  34. Guo Y, Du L, Li Q, Xu H, Chin. J. Chem. Eng., 10, 1847, 2016
  35. Gao BY, Yue QY, Yan W, J. Environ. Manage., 82, 167, 2007
  36. Chinoune K, Bentaleb K, Bouberka Z, Nadim A, Maschke U, Appl. Clay Sci., 123, 64, 2016
  37. Juntunen P, Liukkonen M, Lehtola M, Hiltunen Y, Cogent. Eng., 1, 3969, 2014
  38. Meng Q, Nan J, Gong YB, Guo MQ, Water Wastewater Eng., 56, 88, 2020
  39. Tang L, Xiao F, Wei Q, Liu Y, Zou Y, Liu J, Sand W, Chow C, Chemosphere, 223, 204, 2019
  40. Liu LG, Wu CD, Chen YC, Wang HP, Water Sci. Technol., 75, 137, 2017
  41. Al-Mashaqbeh A, El-Eswed B, Banat R, Khalili FI, Environ. Nanotechnol., Monit. Manage., 10, 351, 2018
  42. Liu JW, Cheng SH, Cao N, Geng CX, He C, Shi Q, Xu CM, Ni JR, DuChanois RM, Elimelech M, Zhao H, Nat. Nanotechnol., 14, 64, 2019
  43. Wei YX, Ding AM, Dong L, Tang YQ, Yu FL, Dong XZ, Colloids Surf. A: Physicochem. Eng. Asp., 470, 137, 2015
  44. Li YNLBL, Zhang CC, Yao Y, Zhang WQ, Li Y, Acta. Sci. Circum, 36, 2503, 2016